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Massless fields

Frame-like formalism
Set of one-forms and gauge invariant two-forms (curvatures)

Ωα(s−1+m)α̇(s−1−m), Rα(s−1+m)α̇(s−1−m), 0 ≤ |m| ≤ s − 1

What is ”on-shell”?

0 ≈ DΩα(s−1+m)α̇(s−1−m) + eβα̇Ωα(s−1+m)βα̇(s−2−m) + O(λ2)

0 ≈ Rα(2s−2) − Eβ(2)Wα(2s−2)β(2)

0 ≈ DWα(2s+k)α̇(k) + eββ̇Wα(2s+k)βα̇(k)β̇ + λ2eαα̇Wα(2s+k−1)α̇(k−1)

Free Lagrangian in terms of curvatures

L0 ∼
s−1∑
m=1

cmRα(s−1+m)α̇(s−1−m)Rα(s−1−m)α̇(s−1−m) + h.c.
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Massless fields

Cubic vertices

Metsaev’s classification d = 4 s1 ≥ s2 ≥ s3
I Type I: n = s1 + s2 + s3
I Type II: n = s1 + s2 − s3

Ansatz for type I:

L1 ∼Wα(ŝ2)β(ŝ3)W γ(ŝ1)
β(ŝ3)Wα(ŝ2)γ(ŝ1)

We must have

ŝ2 + ŝ3 = 2s1, ŝ1 + ŝ3 = 2s2, ŝ1 + ŝ2 = 2s3

This gives

ŝ1 = s2 + s3 − s1, ŝ2 = s1 + s3 − s2, ŝ3 = s1 + s2 − s3
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Massless fields

Fradkin-Vasiliev formalism

Constructive approach

δ0L1|e.o.m. = 0 ⇒ δ1Ω = . . .

Consistent deformations of curvatures R̂ = R+ ∆R

∆R ∼ ΩΩ ⇔ δ1Ω ∼ Ωξ

Consistency means
δR̂ ∼ Rξ

Interacting Lagrangian

L ∼
∑
R̂R̂ (+RRΩ)
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Massless fields

Cubic vertices, type II
Ansatz

∆Rα(2s1−2) ∼ Ωα(ŝ3)β(ŝ1)Ωα(ŝ2)
β(ŝ1) + . . .

ŝ1 = s2 +s3−s1−1, ŝ2 = s1 +s3−s2−1, ŝ3 = s1 +s2−s3−1

Number of derivatives

s1 + s2 + s3 − 2
s1 + s2 + s3 − 3

· · ·
s1 + s2 − s3 + 1

s1 + s2 − s3

· · ·

Flat vertex

L1 ∼ Ω
α(ŝ2)α̇(ŝ3)
1 Ω

β(ŝ1)
2 α̇(ŝ3)DΩ3,α(ŝ2)β(ŝ1) + h.c.
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Massless fields

Massless supermultiplets
For three supermultiplets (Bi ,Fi), i = 1,2,3 we can construct four
elementary vertices

V0(B1,B2,B3), V1(F2,B1,F3), V2(F1,B2,F3), V3(F1,F2,B3).

In general δB ∼ Fζ , δF ∼ dBζ ⇒ NBBB = NBFF + 1
Consider curvature deformations for the first supermultiplet

∆R1 = a0∆R1(Ω2,Ω3) + a1∆R1(Φ2,Φ3),

∆F1 = a2∆F1(Ω2,Φ3) + a3∆F1(Φ2,Ω3)

and require that deformed curvatures transform under the
supertransformations as the undeformed ones.
In AdS4 all four elementary vertices present but in the flat limit one
of the coupling constants goes to zero in agreement with
Metsaev’s classification
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One massless and two massive fields

Gauge invariance for massive fields
Collection of massless fields 0 ≤ k ≤ s:

0 oo // · · · oo // k − 1 oo // k oo // · · · oo // s

N

Ṅ

N

Ṅ

Figure: Massless vs massive case.
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One massless and two massive fields

Cubic vertices

Non-zero on-shell

Rα(2s−2) + h.c., Bα(2s−2−k),α̇(k), 0 ≤ k ≤ 2s − 2

so that abelian vertices do exist even in d = 4
Two types: M1 = M2 and M1 6= M2

Field redefinitions due to Stueckelberg fields

∆R ∼ BΦ⇒ δΦ ∼ Bξ

so that any vertex can be reduced to the abelian form
This can be used for the classification of vertices
Note that results in the unitary gauge do not depend on field
redefinitions
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One massless and two massive fields

Massless spin 3/2

Massive superblock (2,3/2) Ansatz for abelian vertices

La = g1RαβCαΨβ + g2BαβFαΨβ + g3Παα̇Fα̇Ψα

+f1eαα̇BαβCα̇Ψβ + f2eαα̇Bα̇β̇Cβ̇Ψα + f3eαα̇Πβα̇CαΨβ + h.c.

Invariance under the local supertransformations gives
I Two solutions which exist for arbitrary masses M, M̃ and are

equivalent to trivially gauge invariant ones
I One additional solution for M2 = M̃2 only

Some combination of these vertices reproduces minimal (with no
more than one derivative) vertex
Similarly

I Superblock (5/2,2): 3 + 1
I Superblock (3,5/2): 4 + 1
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One massless and two massive fields

Massless spin 2
Massive spin 3/2

I By field redefinitions any such vertex can be reduced to the abelian
form

I There are three linearly independent abelian vertices and only one
is equivalent to the trivially gauge invariant vertex

I Some combination of these vertices reproduces minimal
gravitational interaction which corresponds to the spontaneously
broken N = 1 supergravity

Massive spin 2
I By field redefinitions any such vertex can be reduced to the abelian

form
I There exist three independent trivially gauge invariant vertices and

two abelian vertices which can not be reduced to the trivially gauge
invariant ones.

I Some particular combination of these vertices reproduces minimal
(with no more than two derivatives) gravitational interaction which
corresponds to the (linearized) bigravity
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Three massive fields

General analysis

Classification in d = 4 contains two different cases
I critical: M1 = M2 + M3
I non-critical: M1 6= M2 + M3

Boulanger e.a. 2018: we always have enough field redefinitions to
bring any such vertex into trivially gauge invariant form
But in this case the general structure for such vertices

L1 ∼ RBB + BBB

does not depend on masses?
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Three massive fields

Examples

Massive spin 2 and two massive spin 3/2
I There exist six trivially gauge invariant vertices
I Minimal vertex exists for arbitrary masses M2, M, M̃
I Limit M2 → 0⇒ M = M̃
I Limit M̃ → 0⇒ M2 = M

Massive spin 2 (selfinteraction)
I By field redefinitions any such vertex can be reduced to the abelian

form
I There exist four independent abelian vertices which appear to be

equivalent to trivially gauge invariant ones
I Some particular combination of these vertices reproduces minimal

(having no more that two derivatives) one
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Partially massless fields

Partially massless fields
Exist for special values of M2 ∼ Λ

0 oo // · · · oo // k − 1 k oo // · · · oo // s

N

Ṅ

N

Ṅ

Figure: Partially massless limit before vs after gauge fixing
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Ṅ

Figure: Partially massless limit before vs after gauge fixing

Yu. M. Zinoviev (IHEP, Protvino) Fradkin-Vasiliev formalism in d = 4 ESF-24 14 / 15



Partially massless fields

Cubic vertices

Till now there exist just a few explicit examples, more will appear
soon.
Field redefinitions

I Before gauge fixing: in general we do not have enough to bring the
vertex into abelian form.

I After gauge fixing: there are no any ambiguities, formalism works
as in the massless case.

There exist some candidates for the infinite dimensional algebra
corresponding to the collections of massless and partially
massless fields
”Triangular inequality” l = s − k

s1 − l1 < s2 − l2 + s3 − l3
l1 ≤ l2 + l3
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