Flowing Between String Vacua for the Critical Non-Abelian Vortex with Deformation of $\mathcal{N} = 2$ Liouville theory

A. Yung

September 2, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

Seiberg and Witten 1994 : Confinement in the monopole vacuum of $\mathcal{N}=2$ supersymmetric QCD Abelian confinement

In the search for a non-Abelian confinement Non-Abelian vortex strings were found in $\mathcal{N} = 2 U(N) QCD$ Hanany, Tong 2003 Auzzi, Bolognesi, Evslin, Konishi, Yung 2003 Shifman Yung 2004 Hanany Tong 2004 Non-Abelian string : Orientational zero modes Rotation of color flux inside SU(N). Non-Abelian vortex string is BPS and preserves $\mathcal{N} = (2, 2)$ supersymmetry on its world sheet.

Shifman and Yung, 2015: Non-Abelian vortex in $\mathcal{N} = 2$ supersymmetric QCD is a critical superstring Idea:

Non-Abelian string has more moduli then Abrikosov-Nielsen-Olesen string.

It has translational + orientaional moduli

We can fulfill the criticality condition: In $\mathcal{N} = 2$ QCD with U(N = 2) gauge group and $N_f = 4$ quark flavors.

- The solitonic non-Abelian vortex have six orientational and size moduli, which, together with four translational moduli, form a ten-dimensional space.
- For $N_f = 2N$ 2D world sheet theory on the string is conformal.

For N = 2 and $N_f = 4$ the target space of the 2D sigma model on the string world sheet is

$$R^4 \times Y_6$$

where Y_6 is a non-compact Calabi-Yau manifold studied by Candelas, Witten and Vafa, namely **conifold**.

We studied states of closed type IIA string propagating on $R^4 \times Y_6$ and interpreted them as hadrons in 4D $\mathcal{N} = 2$ QCD.

Shifman and Yung, 2017 spectrum of low lying string states = hadrons of $\mathcal{N} = 2$ QCD

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

To find the spectrum of string states we used Little String Theory approach *Ghoshal, Vafa, 1995; Giveon Kutasov 1999* proposed that Critical string on a conifold at strong coupling is equivalent to non-critical string on

 $\mathcal{R}^4 imes \mathcal{R}_\phi imes S^1$,

with linear in the Liouville field ϕ dilaton $\mathcal{N} = 2$ supersymmetric Liouville theory

Recently it was proven in a direct way

Gavrilenko, levlev, Marshakov, Monastyrskii, Yung 2023

Coulomb branches of world sheet weighted CP(N-1)($\mathbb{WCP}(N, N)$) models on non-compact CY manifolds are described by $\mathcal{N} = 2$ Liouville theory with background charge depending on N. Now using the $\mathcal{N} = 2$ Liouville theory approach we make a step towards broadening the class of 4D $\mathcal{N} = 2$ SQCDs where the solitonic string-gauge duality can be applied.

We introduce quark masses in $\mathcal{N} = 2$ SQCD and changing values of mass parameters interpolate between SQCDs with different gauge groups and numbers of quark flavors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

$\mathbb{WCP}(N, N)$ models

World sheet sigma models on non-Abelian strings in $\mathcal{N} = 2$ SQCD with $N_f = 2N$ are $\mathbb{WCP}(N, N)$ models. Can be understood as Higgs branches of U(1) gauge theory, $e_0 \to \infty$ (*Witten, 1993*). Conformal in the massless limit.

$$\begin{split} S &= \int d^2 x \left\{ \left| \nabla_\alpha n^i \right|^2 + \left| \widetilde{\nabla}_\alpha \rho^j \right|^2 - \frac{1}{4e_0^2} F_{\alpha\beta}^2 + \frac{1}{e_0^2} \left| \partial_\alpha \sigma \right|^2 \right. \\ &+ \frac{1}{2e_0^2} \left. D^2 - \left| \sqrt{2}\sigma + m_i \right|^2 \left| n^i \right|^2 + \left| \sqrt{2}\sigma + m_j \right|^2 \left| \rho^j \right|^2 \right. \\ &+ \left. D \left(\left| n^i \right|^2 - \left| \rho^j \right|^2 - \operatorname{Re} \beta \right) - \frac{\vartheta}{2\pi} F_{01} \right\}, \end{split}$$

where i = 1, ..., N, j = (N + 1), ..., 2N and the complex scalar fields n^i and ρ^j have charges Q = +1 and Q = -1

$$abla_{lpha} = \partial_{lpha} - i A_{lpha} \,, \qquad \widetilde{
abla}_{lpha} = \partial_{lpha} + i A_{lpha} \,,$$

$$\Sigma = \sigma + \sqrt{2}\theta_R \bar{\lambda}_L - \sqrt{2}\bar{\theta}_L \lambda_R + \sqrt{2}\theta_R \bar{\theta}_L (D - iF_{01})$$

$$-rac{eta}{2}\int d^2 ilde{ heta}\sqrt{2}\,\Sigma=-rac{eta}{2}\,(D-iF_{01}),\qquadeta={
m Re}\,eta+i\,rac{artheta}{2\pi}$$

Twisted masses m_i and m_j coincide with quark masses of 2N flavors in 4D SQCD.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Dimension of the Higgs branch in the $m_i = m_i = 0$ limit

$$\dim_{\mathcal{R}}\mathcal{H}=4\mathcal{N}-1-1=2\left(2\mathcal{N}-1\right)$$

The model is conformal and $\mathcal{N} = (2, 2)$ supersymmetric \Rightarrow target space is Ricci-flat and Kähler \Rightarrow Calabi-Yau Central charge

$$\hat{c}_{CY} \equiv \frac{c_{CY}}{3} = \dim_C \mathcal{H} = 2N - 1$$

For $N = 2 \dim_R \mathcal{H} = 6$ – conifold 6+4=10 – critical non-Abelian string

We consider all N, moreover use large N approximation as a first step.

Interpolation procedure

Classical vacuum structure (at $\operatorname{Re}\beta > 0$)

 $\sqrt{2}\sigma = -m_{i_0},$ $|n^{i_0}|^2 = \operatorname{Re}\beta,$ $i_0 = 1, ..., N.$ Fields n^i , $i \neq i_0$ and fields ρ^j have masses $|m_i - m_{i_0}|$ and $|m_j - m_{i_0}|$ respectively. Take N = 2K

$$m_i = (0, ..., 0, M, ..., M), \qquad m_i = m_{i+N}$$

 $\leftarrow K \rightarrow \leftarrow K \rightarrow$ (1)

Fields ρ^{j} has the same masses as fields n^{i} , j = i + N, while half of n^{i} fields acquire masses M.

・ロト ・西ト ・ヨト ・ヨー うへぐ

Starting point: $M \to \infty$

Half of *n* and ρ fields decouple. We have $\mathbb{WCP}(K, K)$ model

```
Final point: M \rightarrow 0
```

We have $\mathbb{WCP}(N, N)$ model N = 2K. In 4D SQCD:

Starting point: $M \to \infty$ Two non-interacting copies of $\mathcal{N} = 2 \text{ U}(K)$ SQCD with $N_f = 2K$

Final point: $M \to 0$ $\mathcal{N} = 2 U(N)$ SQCD with $N_f = 2N$

We will take the limit K = 2 so the initial point is the critical non-Abelian string on the conifold

Coulomb branch

D'Adda, Davis, DiVeccia, Salamonson, 1983; Witten, 1993 ...

Critical points of the exact twisted superpotential for $\boldsymbol{\Sigma}$ $% \boldsymbol{\Sigma}$ are given by the vacuum equation

$$\prod_{i=1}^{N} \left(\sqrt{2}\,\sigma + m_i \right) = e^{-2\pi\beta} \prod_{j=N+1}^{2N} \left(\sqrt{2}\,\sigma + m_j \right)$$

In the limit $m_i = m_j = 0$

 $\sigma^{N} = e^{-2\pi\beta} \sigma^{N}, \qquad \sigma = 0 \quad \text{for } \beta \neq 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For $\beta = 0 \sigma$ is arbitrary – Coulomb branch

We will see that Coulomb branch is described by $\mathcal{N}=2$ Liouville theory

$\mathcal{N} = 2$ Liouville theory from $\mathbb{WCP}(N, N)$ model Massless theory

Take $\mathbb{WCP}(N, N)$ at large N and $\beta = 0$. Fields n and ρ become "massive" at $\sigma \neq 0$ and can be integrated out. Witten, 1979 for CP(N - 1) model.

Similar calculation for WCP(N, N) model. Gavrilenko, levlev, Marshakov, Monastyrskii, Yung 2023

Consider the most important kinetic term for $\boldsymbol{\sigma}$

$$S_{\sigma}^{\rm kin} = \int d^2 x \frac{1}{e^2} |\partial_{lpha}\sigma|^2$$

where

Thus we get

$$S^{\sigma}_{ ext{eff}} = rac{2N}{4\pi}\int d^2x \; rac{1}{2} \; rac{|\partial_lpha \sigma|^2}{|\sigma|^2}$$

Change of variables

$$\sigma = e^{-\frac{\phi+iY}{Q}}$$

gives

$$S_{\text{eff}}^{\sigma} = \frac{1}{4\pi} \int d^2 x \left(\frac{1}{2} \left(\partial_{\alpha} \phi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} Y \right)^2 \right)_{\text{eff}} d^2 x \left(\frac{1}{2} \left(\partial_{\alpha} \phi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} Y \right)^2 \right)_{\text{eff}} d^2 x \left(\frac{1}{2} \left(\partial_{\alpha} \phi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} Y \right)^2 \right)_{\text{eff}} d^2 x \left(\frac{1}{2} \left(\partial_{\alpha} \phi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} Y \right)^2 \right)_{\text{eff}} d^2 x \left(\frac{1}{2} \left(\partial_{\alpha} \phi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} Y \right)^2 \right)_{\text{eff}} d^2 x \left(\frac{1}{2} \left(\partial_{\alpha} \phi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} Y \right)^2 \right)_{\text{eff}} d^2 x \left(\partial_{\alpha} \psi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} Y \right)^2 \right)_{\text{eff}} d^2 x \left(\partial_{\alpha} \psi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} \psi \right)^2 \right)_{\text{eff}} d^2 x \left(\partial_{\alpha} \psi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} \psi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} \psi \right)^2 \right)_{\text{eff}} d^2 x \left(\partial_{\alpha} \psi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} \psi \right)^2 \right)_{\text{eff}} d^2 x \left(\partial_{\alpha} \psi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} \psi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} \psi \right)^2 \right)_{\text{eff}} d^2 x \left(\partial_{\alpha} \psi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} \psi \right)^2 \right)_{\text{eff}} d^2 x \left(\partial_{\alpha} \psi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} \psi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} \psi \right)^2 \right)_{\text{eff}} d^2 x \left(\partial_{\alpha} \psi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} \psi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} \psi \right)^2 \right)_{\text{eff}} d^2 x \left(\partial_{\alpha} \psi \right)^2 + \frac{1}{2} \left(\partial_{\alpha} \psi \right$$

Here Y is a compact variable, $Y + 2\pi Q \sim Y$, where $Q|_{N \to \infty} \approx \sqrt{2N}$

To get background charge we need to introduce world sheet metric $h_{\alpha\beta}$. Similar calculation gives

$$S_{ ext{eff}}^{\sigma} = rac{1}{4\pi}\int d^2x \sqrt{h} \,\left(rac{1}{2}\,h^{lphaeta}(\partial_lpha\phi\partial_eta\phi+\partial_lpha Y\partial_eta Y) - rac{Q}{2}\phi\,R^{(2)}
ight),$$

where 2D Ricci scalar $R^{(2)} = -\frac{1}{\sqrt{h}}\partial_{\alpha}^2 \log \sqrt{h}$ in the conformal gauge.

This is the bosonic part of the $\mathcal{N}=2$ Liouville action with linear dilaton

$$\Phi(\phi) = -rac{Q}{2}\phi$$

The holomorphic stress tensor is

$$T = -\frac{1}{2} \left[(\partial_z \phi)^2 + Q \, \partial_z^2 \phi + (\partial_z Y)^2 \right], \qquad Y \sim Y + 2\pi Q$$

Central charge

$$c_L = 3 + 3Q^2,$$
 $\hat{c}_L \equiv \frac{c_L}{3} = 1 + Q^2.$

The $\mathcal{N} = 2$ Liouville interaction superpotential comes from the 2D FI term in the $\mathbb{WCP}(N, N)$ model

$$S_{\mathrm{FI}} = \mu \int d^2x d^2 \tilde{ heta} \Sigma + c.c. = \mu \, rac{D - iF_{01}}{\sqrt{2}} + c.c.$$

This superpotential is a marginal deformation of $\mathcal{N}=2$ Liouville theory. The conformal dimension of σ is

$$\Delta(\sigma = e^{-rac{\phi+iY}{Q}}) = \left(rac{1}{2}, rac{1}{2}
ight)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Exact equivalence

Relax large N condition.

The form of the action after integrating out fields n and ρ is fixed on dimensional grounds and by supersymmetry. We need only to find $Q(N) \approx \sqrt{2N}$. Require that two central charges should be the same.

$$\hat{c}_{CY} = 2N - 1 = 1 + Q^2 = \hat{c}_L$$

gives

$$Q=\sqrt{2(N-1)}$$

Mass deformation

Now consider WCP(N, N) model with nonzero twisted masses starting with the large N approximation.

$$S_{\text{eff}}^{\sigma} = \frac{1}{4\pi} \int d^2 x \sum_{A=1}^{2N} \frac{|\partial_{\alpha}\sigma|^2}{|\sqrt{2}\sigma + m_A|^2} \\ = \frac{1}{4\pi} \int d^2 x \frac{1}{2} \frac{|\partial_{\alpha}\sigma|^2}{|\sigma|^2} \sum_{A=1}^{2N} \frac{1}{\left|1 + \frac{m_A}{\sqrt{2}\sigma}\right|^2}$$
(2)

Take $\sigma = e^{-\frac{\phi+iY}{Q}}$, N = 2K and $m_i = (0, ..., 0, M, ..., M)$. We get

$$S_{\text{eff}} = \frac{1}{4\pi} \int d^2 x \, g_{cl}(\phi, Y) \, \left(\frac{1}{2} (\partial_\alpha \phi)^2 + \frac{1}{2} (\partial_\alpha Y)^2\right)$$
$$g_{cl}(\phi, Y) = 1 + \frac{1}{\left|1 + \frac{M}{\sqrt{2}} e^{\frac{\phi + iY}{Q}}\right|^2}, \qquad Q^2 \approx 2K$$

We use this just as initial conditions, namely

$$g_{cl}(\phi,Y)pprox 1+rac{2}{|M|^2}\,e^{-rac{2\phi}{Q}}$$

for the metric warp factor and

$$\Phi pprox -rac{Q}{2}\phi$$

for the dilaton.

True metric and dilaton will be found by solving the gravity equations of motion

Relax large K approximation

$$Q = \sqrt{2(K-1)},$$
 for $K = 2$ $Q = \sqrt{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Gravity equations

The bosonic part of the action of the type-II supergravity in the string frame is given by

$$S = \frac{1}{2\kappa^2} \int d^D x \sqrt{-G} e^{-2\Phi} \left\{ R + 4G^{MN} \partial_M \Phi \partial_N \Phi_N + \cdots \right\}$$

Einstein's equations:

 $R_{MN} + 2D_M D_N \Phi = 0$

Dilaton equation:

$$R = 4G^{MN}\partial_M \Phi \partial_N \Phi - 4G^{MN}D_M D_N \Phi + p,$$

where $p = \frac{D-10}{2}$. Minkowski 4D × deformed Liouville theory. D = 6, p = -2Ansatz for the internal metric:

$$ds_{\rm int}^2 = g(\phi, Y) \left\{ d^2 \phi + d^2 Y \right\}$$

Solutions to gravity equations

Solution for for the dilaton:

$$\Phi(\phi)=-rac{Q}{2}\,\phi+rac{1}{2}\,\ln g$$

and for the metric warp factor:

$$g(\phi) = rac{1}{1 - rac{1}{A} \, e^{-Q\phi}} = rac{1}{1 - e^{-Q(\phi - \phi_0)}},$$

where A is a constant and $\phi_0 = -\frac{1}{Q} \ln A$. We see that these solutions satisfy initial conditions for the mass-deformed metric and dilaton with

$$A = \frac{M^2}{2}, \qquad \phi_0 = -\frac{1}{Q} \ln\left(\frac{M^2}{2}\right)$$

only if $Q = \sqrt{2}$

The metric warp factor develop a naked singularity at $\phi = \phi_0$

$$|g|_{\phi o \phi_0} pprox rac{1}{Q(\phi-\phi_0)}$$

where the curvature is singular. Thus, the geometry is defined only at $\phi > \phi_0$.

Turns out that the Liouville superpotential (Liouville wall) is not modified and is still a marginal deformation of the theory. Liouville wall prevents field ϕ from penetrating to the region of large negative values.

$$\phi_{
m wall}\sim -\,Q\lnrac{1}{|\mu|}$$

• At $\phi_0 \ll \phi_{\text{wall}}$ string theory describe hadrons of slightly deformed $\mathcal{N} = 2$ SQCD with U(2) gauge group and $N_f = 4$ quark flavors

• At $\phi_0 \gg \phi_{wall}$ string theory describe hadrons of $\mathcal{N} = 2$ SQCD with U(4) gauge group and $N_f = 8$ quark flavors

Conclusions

- ▶ We show that non-Abelian critical string supported in mass-deformed $\mathcal{N} = 2$ SQCD interpolating between theory with U(2) gauge group and $N_f = 4$ quarks and theory with U(4) gauge group and $N_f = 8$ quarks is associated with mass deformation of $\mathcal{N} = 2$ Liouville world sheet theory.
- To find the true string vacuum we solve the effective gravity equation of motion.
- The solution shows the presence of a naked singularity of the metric.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・