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Entangled Module

One module is missing from previous considerations as it is not a product

of two standard modules for R(k)R(k) = <(1) _01> or ( 01 0) The

covariant consistency equation takes form

1 . - _
(DL + Ehaoz |:ya1(8d1 + 8(542) + _)7(541(8@1 =+ 8042)~-~:| _

- éhad |:ya1()7d1 — Va2) — 0a1(0a1 — Oa2) + ])C(Yh Yo, k, k|X) =0
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Fock Module

As the first step, we move from Y} to a doubled set of oscillators aj 24,
b1723 with the star product

(fxg)(a, b) = /d uod*viod*sy 2d*ty o f (a+u, b+t)g(a+s, b+v)

X exp <251At1A — 2u1Avf‘ + 252At§‘ — 2U2AVZA> .

[aia, b®] = 0504% . [aia, a8l =0, [, 5;%l. =0

following M.A. Vasiliev, Phys. Rev. D 66 (2002), 066006
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Fock Module

The bilinears spanning gl/(4, C) @ gl(4, C)

1
T; B:aiAbiBEE(aiA*biB-FbiB*a,'A). i=1,2

can be quotioned by the central element

| =

N; = a,-Ab,-A = (a,-A * b;A + b,'A * a,-A) .

~ N

resulting in generators of s/(4,C) & sl(4, C)

1
tia® = (aiabi® — Z5AB/V,')-
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Fock Module

By imposing reality conditions we single out the su(2,2) @ su(2,2) real
part, which splits our oscillators into pairs of two-component spinors

8. (5 B%1. = 6508,

[a,-m bJBL;< = (SU(S’B

= K Lo =G = Ta te%
dia = bia, bi'=3&", &ia=bia, bj=aj.

K.A. Ushakov, A.A. Tarusov Linearised Analysis of the Coxeter Higher Spin Theory



Fock Module

One can introduce vacua for each set of the oscillators

aia*ﬂllzoa b;x*7r’220a a;a*7r’3:0, b?*ﬂ’4203

b;x*ﬂ"lIO, 5,‘@*71”220, 5,‘@*71”320, b,-a*Tr’4IO.

realised as

7Ti1 = exp{—2a,-ab,-°‘ + 25,@5[&} R ’R’ig = exp 2aiabi® — 23;4,b;

3
}

7Ti3 = exp{f2a;ab,-°‘ — 2§id[;’-d} s 7l'i4 = exp{Za,-ab,-a + 25,‘@5,'0.‘

The space of states is

|C') = C'(2by, 25, 2by, 25, 1%y
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Fock Module

Introducing the flat su(2,2) @ su(2,2) connection
wo = wOaB(LlaB + L2a6) + @0‘5‘6([1@6 + Z2d3)+
+ o 5(PaP + P27+ K 4 K24,),
where the su(2,2) generators are realised in a canonical way

) 1 . L
Llaﬂ = aiabiﬁ - §5aﬁai'ybi‘ya Plaﬂ = aiabiﬁ ,
. L 1 o )
L's” = &iabi” — §5aﬁ5iﬁbiv7 K'a" = &iab”
T o
D' = E(aiabia — djabi”),

the twisted-adjoint modules can be constructed by restricting the Fock
modules with an equation

du |CM) +wp x |CM) = 0.
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Automorphism of the oscillator algebra

Since there exist automorphisms on the oscillator algebra, there is no
need to consider each module independently. The following two are of a
particular interest to us

{p;(a,-a) =bia, pi(b?)=2a%, pi(da)=ba pi(b}) = 5?} & ki ki,

1 1
{¢+(ala) = §(b1 + b+ a1 — &)a, Vi(a) = §(b1 +by+a—ai)a,

1 1 N
U (by) = (a1 + a2+ by — b2)*, ¥ (b3) = (a1 + a2 + by — bl)a} < ki
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Transitioning between modules

The composition of these automorphism allows us to arrive at the
equations for the entangled module

e [C11) + pi(wr (o)) | CH1) =
To construct the unitary module we introduce a new set of oscillators e/ ,

and f74” such that

[eliIA7 eLB]* = 07 [fiAV7 ijM]* = 07 [e,iA7 ijp']* = (SU(SgKAB s

where Kag = ((1) 01>.
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Transitioning between modules

@ Bilinears of these operators realise
sp(8) @ sp(8) D su(2,2) @ su(2,2)

@ Total energy operator

2
E= Z <fi1’\ef\1 + fiz’\ef\z) .
i—1
@ A Fock module associated with e/ , and f'4”

e *xM=0, fLl*M=0, MNxe,=0, MNxf#=0.
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Transitioning between modules

New oscillators are related to old ones via a Bogoliubov transform

; 1 . i 1 5
€ = E(ail +idp), ep= ﬁ(ail —id3),
, 1 .7 i 1 ib
fity = E(binr/b,-i), fily = ﬁ(*bi2+’bii)’

Fock module F is suitable for the description of physical states when it
satisfies two conditions

@ F is a highest/lowest weight module meaning the energy E is
bounded from above/from below.

@ F admits an invariant positive-definite Hermitian form, i.e. F is
unitary.
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Transitioning between modules

These conditions are true for the twisted-adjoint module, but for the
entagled module, a check shows that they cannot be both satisfied. To
achieve the lowest-weight representation, the energy needs to be diagonal:

8

p1+(E) = Z v, Vi
a=1
where
- 1.5 21y Lo 20y 1.4 11, 21 .2
V, = {ﬁ(’em + 1% )7%(’611 +f%2%), 5(’622 — 1+ —ey),
1. . 1 . 1 .
5(’6112 — Y2 +iefy — £25%), ﬁ(’eh + 15?), ﬁ(’eéll + o),
1 1
§(ie122 — ief; — F217 4+ £12%), 5(7&11 + ot —iegy — iedy)},
vii={.1},
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Transitioning between modules

There exists no positive-definite Hermitian form that leads to
p1b+(E) =32, (vi)Tvi . Therefore, this module cannot represent
physical states.

In the flat limit:

i - - _ _
<dx + Ehw <80413d1 + 001042 + 002042 — 3&25’{11)) C(Y1, Yalx) = 0.
This equation admits plane wave solutions
C(Y1, Yalx) = EXP{I'<AU§/aE_JaXD‘d + Y60y + 5”5/@7?) } ;

where &, € are the Fourier partners for y and y and
1/1 1
A=3 (—1 1) '
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Consistent truncation to the physical sector

@ Since this module is entirely non-unitary, it thus needs to be
excluded from the complete non-linear system

@ A consistent truncation of the unfolded system can be achieved by
restricting the system to an invariant space of some automorphism.
We consider total Klein parity.

@ SxS(—k)=S5x*5S(k) = B(—k) = —B(k) The only such fields
belong to the product of adjoint and twisted-adjoint modules

S*S—/< ZA”dZAn—i—ZZ [n, vive dz dZom * 3, k,+
i VER;

B dzodZm * 5 ky
(v,v)
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Modified Shifted Homotopy Technique

To reconstruct the free equations (Central On-Shell Theorem) we modify
the shifted homotopy technique !

1
Dog(Y.Z:dZ) = (22 + Q) 2 / W (V12— (1 1)1:Qs; td2)
9dZA J, ©

Along with a cohomology projector
hof(Z;dZ) = f(—1,Q,;0).

satisfy usual identities
AgAp = —ApAg.

hpAg = —holAp.

1V .E.Didenko, O.A.Gelfond, A.V.Korybut and M.A Vasiliev, 2018



Modified Shifted Homotopy Technique

heApALf(y, z)dz" dz,, =

_» / Pr3(1—r1— 72— 73) s (b—C)m (3—C)™ £y, —T1C—T3b—T23) .
[0,1]3

heApA A, = 2/ d*r6(1 =1 — 1 — 13)(b— ¢)p(a— )Y,
[0,1]3 (v,v)

vPva A
X exp{ - im(ﬁc + ma+ Tgb)payg‘}kv .

vFv VnV ~
~ H « (e}
Yv = eXp| 17— ZapY, 7dZ dZamkV
v (V7 V) “P7q v n

(v, v)
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Central On-Shell Theorem (general Coxeter group)

The obvious difference comes in the star-exchange properties:
Aq+ay’,}\/v * C(Y) = C(Y) * Aq-&—ozy-&—(l—oz)Ip—(1+oz)IR,,(p)'/7\/v .

And thus the vertices themselves are somewhat modified

1
T w, C,w):—Ean Z w* C *x wx
K

VER

<h/(tl+t2+p)A/(p+t1+t2R’V(tz))Al(sz)%Jr

+ h/(p+t1+tz—Rv(tz))Al(p+t2—RV(tz))Al(p+tz)ﬁ’\/> )
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Central On-Shell Theorem (B, group)

M os s s o
Tiot(Qads, Qags, C) = _%Hdﬁ'aftafc(oa}/b)/layz Kelx) * ki+

Im g

2 3y2 y2 C(y1707}717}72;kc|x)*i%2a

T2 (Qads, Qadgs, C) =

i = - . 1 oo p .
%Haﬁ'(h—laﬂ (}/2—131)’6(:( (n+y2), (YI+Y2)»YI,Y2;KCX>*I(12+

2

ime s =g 1 . .
%Hdﬁ'(}/2+/al) (yz+181)ﬁC<2(y1yz), —5=y2) 3, 7 ch>*k1+2

K.A. Ushakov, A.A. Tarusov Linearised Analysis of the Coxeter Higher Spin Theory



Results

@ An embedding of the AdS, solution into a Coxeter model
demanding equating idempontents / and /

@ For the case of the B, model, all possible covariant derivatives and
the resulting modules have been found

@ All modules are either tensor products of modules in the standard
theory or belong to a new class of infinite-dimensional
non-unitarizable modules

@ A consistent truncation of non-linear systems which eliminates the
entagled moduleshas been found

@ A restriction to unitary submodules of C field interpreted as
boundary conditions

@ Generalization of the Central On-Shell theory has been found for a
general Coxeter group by an uplifted shifted homotopy technique. In
the case of B, all linear vertices have been presented
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Question Time

K.A. Ushakov, A.A. Tarusov Linearised Analysis of the Coxeter Higher Spin Theory



	First Project
	Origins
	CHS models
	AdS_4 solution
	Covariant derivatives and modules

	Second Project
	Entangled Module
	Modified Shifted Homotopy Technique and free equations
	Results


