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1. Non-relativistic perfect fluid and its symmetries

Perfect fluid equations

In non-relativistic space-time (t, xi), i = 1, ..., d a compressible fluid is
characterized by a density ρ(t, x) and the velocity υi(t, x), which both
enter the continuity equation

∂0ρ+ ∂i(ρυi) = 0. (1)

The perfect fluid dynamics is described by the Euler equation

Dυi = −
1

ρ
∂ip, where D = ∂0 + υi∂i (2)

The pressure p(t, x) is assumed to be related to ρ(t, x) via an
equation of state

p = p(ρ) (3)



1. Non-relativistic perfect fluid and its symmetries

Hamiltonian formulation

The Hamiltonian=energy reads

H =

∫
dx

(
1

2
ρυiυi + V

)
, p = ρV ′ − V (4)

It generates the continuity equation and the Euler equation in the usual
way

∂0ρ = {ρ,H} = −∂i(ρυi), ∂0υi = {υi, H} = −υj∂jυi −
1

ρ
∂ip (5)

provided the non-canonical Poisson brackets for ρ and υi are chosen
P. Morrison, J. Greene ’80

{ρ(x), υi(y)} = −∂iδ(x− y),

{υi(x), υj(y)} =
1

ρ
(∂iυj − ∂jυi) δ(x− y). (6)



1. Non-relativistic perfect fluid and its symmetries

Conserved charges

Conserved energy, momentum, angular momentum, Galilei boost

H =

∫
dx

(
1

2
ρυiυi + V

)
Pi =

∫
dxρυi

Mij =

∫
dxρ(xiυj − xjυi) Ci = Pit−

∫
dxρxi

For suitable equation of state L. O’Raifeartaigh, V. Sreedhar ’01

p = νρ1+
2
d (7)

two more conserved charges exist corresponding to dilatation and special
conformal transformation

D = tH − 1

2

∫
ρxiυi, K = t2H − 2tD − 1

2

∫
ρxixi (8)



1. Non-relativistic perfect fluid and its symmetries

Algebra of conserved charges

Conserved charges under Poisson brackets form the Schrödinger algebra

{H,D} = H {H,Ci} = Pi

{H,K} = 2D {D,Ci} =
1

2
Ci {D,Pi} = −

1

2
Pi

{D,K} = K {K,Pi} = −Ci

with following rotation sector

{Mij , Pk} = −δk[iPj], {Mij , Ck} = −δk[iCj], {Mij ,Mkl} = −δikMjl+...

and centrally extended sector

{Pi, Cj} = δijM

Here H,D,K form the conformal so(2, 1) subalgebra. M is central
charge corresponding to total mass M =

∫
dxρ.



2. Schrödinger algebra and `–conformal Galilei algebra

• The Schrödinger algebra is conformal extension of Galilei algebra
which has been found to be relevant for a wide range of physical
applications.

• However it does not reproduce the non-relativistic contraction of the
relativistic conformal algebra.

• This stimulates interest in the study of other finite-dimensional
conformal extensions of the Galilei algebra which are combined into
a family known in the literature as the `-conformal Galilei algebra
J. Negro, M. del Olmo, A. Rodriguez-Marco ’97

• Dynamical systems with the `-conformal Galilei symmetries is of
potential intrest in context of non-relativistic AdS/CFT.



2. Schrödinger algebra and `–conformal Galilei algebra
The structure relations of `-conformal Galilei algebra read

[H,D] = H [H,C
(k)
i ] = kC

(k−1)
i

[H,K] = 2D [D,C
(k)
i ] = (k − `)C(k)

i

[D,K] = K [K,C
(k)
i ] = (k − 2`)C

(k+1)
i

Realization in non-relativistic space-time (t, xi)

H = ∂0, D = t∂0 + `xi∂i, K = t2∂0 + 2`txi∂i, C
(k)
i = tk∂i

• To be finite-dimensional k = 0, 1, .., 2` ⇒ ` is (half)-integer. ` is
sometimes called as conformal "spin".

• C(k)
i correspond to translation and Galilei boost for k = 0, 1 and

accelerations for k > 1.

• ` = 1/2 is the Schrödinger algebra, ` = 1 is the non-relativistic limit
of conformal algebra so(2, d+ 1).



2. Schrödinger algebra and `–conformal Galilei algebra

Example

Higher derivative Pais-Uhlenbeck oscillator Pais, Uhlenbeck 1950

n∏
k=1

(
d2

dt2
+ ω2

k

)
xi(t) = 0, 0 < ω1 < ... < ωn

enjoys the `-conformal Galilei symmetry for a special choice of its
frequencies Andrzejewski, Galajinsky, Gonera, Masterov ’14

ωk = (2k − 1)ω1, k = 1, ..., n

with ` = n− 1
2



3. Generalized non-relativistic perfect fluid equations

Generalized perfect fluid equations which hold invariant under the action
of the `-conformal Galilei group were formulated by A. Galajinsky ’22

∂ρ

∂t
+
∂(ρυi)

∂xi
= 0, D2`υi = −

1

ρ

∂p

∂xi
, p = νρ1+

1
`d .

The energy density ` = n+
1

2

T 00 =
1

2
ρ

2n∑
k=0

(−1)kDkυiD2n−kυi + V, V = `dp

Given a set of equations of motion, it is always desirable to have a
Hamiltonian and Lagrangian formulation. The goal is to elaborate
on this issue.



4. Hamiltonian formulation

To construct Hamiltonian formulation TS ’23 we rewrite generalized
equations in the equivalent first order form

∂0ρ+ ∂i(ρυ
(0)
i ) = 0, Dυ(k)i = υ

(k+1)
i , Dυ(2n)i = −1

ρ
∂ip

with auxiliary fields υ(k)i , k = 0, 1, ..., 2n, where υ(0)i = υi.

H =

∫
dxT 00 =

∫
dx

(
1

2
ρ

2n∑
k=0

(−1)kυ(k)i υ
(2n−k)
i + V

)
.

Equations in the Hamiltonian form

∂0ρ = {ρ,H} = −∂i(ρυ(0)i )

∂0υ
(k)
i = {υ(k)i , H} = −υ(0)j ∂jυ

(k)
i + υ

(k+1)
i

∂0υ
(2n)
i = {υ(2n)i , H} = −υ(0)j ∂jυ

(2n)
i − 1

ρ
∂ip.



4. Hamiltonian formulation

Poisson brackets

{ρ(x), υ(k)i (y)} = −δ(k)(2n)∂iδ(x− y)

{υ(k)i (x), υ
(m)
j (y)} =

1

ρ

(
δ(k)(2n)∂iυ

(m)
j − δ(m)(2n)∂jυ

(k)
i

)
δ(x− y)

−(−1)k 1
ρ
δ(k+m)(2n−1)δijδ(x− y)

where δ(k)(m) and δij are the Kronecker symbols.



4. Hamiltonian formulation
` = 3/2 example

Equations

∂ρ

∂t
+
∂(ρυ

(0)
i )

∂xi
= 0, Dυ(0)i = υ

(1)
i , Dυ(1)i = υ

(2)
i , Dυ(2)i = −1

ρ

∂p

∂xi

Hamiltonian

H =

∫
dx

(
ρυ

(0)
i υ

(2)
i −

1

2
ρυ

(1)
i υ

(1)
i + V

)
,

Poison brackets

{ρ(x), υ(2)i (y)} = −∂iδ(x− y), {υ(0)i (x), υ
(2)
j (y)} = −1

ρ
∂jυ

(0)
i δ(x− y)

{υ(0)i (x), υ
(1)
j (y)} = −1

ρ
δijδ(x−y), {υ(1)i (x), υ

(2)
j (y)} = −1

ρ
∂jυ

(1)
i δ(x−y)

{υ(2)i (x), υ
(2)
j (y)} = 1

ρ

(
∂iυ

(2)
j − ∂jυ

(2)
i

)
δ(x− y)



4. Hamiltonian formulation

Conserved charges corresponding temporal translation, dilatation, special
conformal transformations and vector generators read

H =

∫
dx

(
1

2
ρ

2n∑
k=0

(−1)kυ(k)i υ
(2n−k)
i + V (p)

)

D = tH − 1

2

∫
dxρ

2n∑
k=0

(−1)k(k + 1)υ
(k)
i υ

(2n−k−1)
i

K = t2H − 2tD

−1

2

∫
dxρ

2n∑
k=0

(−1)k
[
(n+ 1)(2n+ 1)− k(k + 1)

]
υ
(k−1)
i υ

(2n−k−1)
i

C
(k)
i =

k∑
s=0

(−1)s k!

(k − s)!
t(k−s)

∫
dxρυ

(2n−s)
i



4. Hamiltonian formulation

They satisfy the structure relations of the `-conformal Galilei algebra
under Poisson brackets

{H,D} = H {H,C(k)
i } = kC

(k−1)
i

{H,K} = 2D {D,C(k)
i } = (k − `)C(k)

i

{D,K} = K {K,C(k)
i } = (k − 2`)C

(k+1)
i

with central extensions A. Galajinsky, I. Masterov ’11

{C(k)
i , C

(m)
j } = (−1)kk!m!δ(k+m)(2n+1)δijM, M =

∫
dxρ,



5. Lagrangian formulation
In order to demonstrate how the generalized perfect fluid equations can
be obtained from the variational principle, let us first recall how the
Lagrangian for a perfect fluid is built which correctly reproduces the
continuity equation and the Euler equation (see e.g. review R. Jackiw,
V.P. Nair, S.Y. Pi, A.P. Polychronakos ’04)

∂0ρ+ ∂i(ρυi) = 0, Dυi = −
1

ρ
∂ip. (9)

In three spatial dimensions this is achieved by making recourse to the
Clebsch parametrization for the velocity vector field

υi = ∂iθ + α∂iβ, (10)

which involves three scalar functions θ, α and β. Then the Lagrangian
reads

L = −
∫
dxρ (∂0θ + α∂0β)−H

= −
∫
dxρ (∂0θ + α∂0β)−

∫
dx

(
1

2
ρυiυi + V

)
, (11)



5. Lagrangian formulation

The Euler-Lagrangian equations

δθL = 0 → ∂0ρ+ ∂i(ρυi) = 0 (12)
δα,βL = 0 → Dα = 0, Dβ = 0 (13)

δρL = 0 → Dθ − 1

2
υiυi + V ′ρ = 0 (14)

As a result, the Euler equation are satisfied

Dυi = D(∂iθ + α∂iβ) = −
1

ρ
∂ip, p = ρV ′ρ − V. (15)



5. Lagrangian formulation

In order to generalize the construction above to the `-conformal perfect
fluid, we go over to the equivalent first order system. In the case of
half-integer ` = n+ 1

2 , the starting equations read

∂0ρ+ ∂i(ρυ
(0)
i ) = 0, (16)

Dυ(k)i = υ
(k+1)
i , k = 0, 1, ..., 2n− 1, (17)

Dυ(2n)i = −1

ρ
∂ip, p = νρ1+

1
`d . (18)

Now one has a set of vector variables υ(k)i . What suitable Clebsch-type
parametrization should be used?



5. Lagrangian formulation

It turns out that in order to obtain the generalized equations from the
variational principle only the highest component υ(2n)i should be
Clebsch-decomposed, while the remaining vector variables υ(k)i with
k < 2n may remain intact. Up to a field redefinition, a suitable
Clebsch-type decomposition can be chosen in the form TS ’24

υ
(2n)
i = ∂iθ + α∂iβ +

n−1∑
k=0

(−1)k+1υ
(k)
j ∂iυ

(2n−k−1)
j . (19)

When n = 0, there is no sum on the right hand side and the
decomposition for the Euler fluid is reproduced. The generalized
Lagrangian reads

L = −
∫
dxρ

(
∂0θ + α∂0β +

n−1∑
k=0

(−1)k+1υ
(k)
i ∂0υ

(2n−k−1)
i

)
−H,



5. Lagrangian formulation

Thus, the basic variables for the Lagrangian are the scalar fields ρ, θ, α,
β and a set of vector fields υ(k)i with k < 2n. The Euler-Lagrangian
equations

δθL = 0 → ∂0ρ+ ∂i(ρυi) = 0 (20)
δα,βL = 0 → Dα = 0, Dβ = 0 (21)

δ
υ
(k)
i
L = 0 → Dυ(k)i = υ

(k+1)
i (22)

δρL = 0 → Dθ − υ(0)i υ
(2n)
i +

(−1)n

2
υ
(n)
i υ

(n)
i + V ′ρ = 0 (23)

As a result the last equation

Dυ(2n)i = D

(
∂iθ + α∂iβ +

n−1∑
k=0

(−1)k+1υ
(k)
j ∂iυ

(2n−k−1)
j

)
= −1

ρ
∂ip,

is satisfied as well, where p = ρV ′ρ − V .



5. Lagrangian formulation
` = 3/2 example

Basic variables ρ, θ, α, β and υ(0)i , υ(1)i . Lagrangian is

L = −
∫
dxρ

(
∂0θ + α∂0β − υ(0)i ∂0υ

(1)
i

)
−H

with Hamiltonian

H =

∫
dx

(
ρυ

(0)
i υ

(2)
i −

1

2
ρυ

(1)
i υ

(1)
i + V

)
,

where υ(2)i = ∂iθ + α∂iβ − υ(0)j ∂iυ
(1)
j .

Transition to Hamiltonian formulation lead to the second-class
constraints and following Dirac brackets

{ρ(x), θ(y)}D = δ(x− y), {θ(x), α(y)}D =
α

ρ
δ(x− y)

{θ(x), υ(0)i (y)}D =
υ
(0)
i

ρ
δ(x− y), {α(x), β(y)}D =

1

ρ
δ(x− y)

{υ(0)i (x), υ
(1)
j (y)}D = −1

ρ
δijδ(x− y).



Conclusion

• The Hamiltonian and Lagrangian formulation for the generalized
perfect fluid equations with the `-conformal Galilei symmetry was
constructed.

• The peculiarity of the Hamiltonian formulation is that the Poisson
brackets among the physical fields related to the fluid density and
the velocity vector with its descendants are non-canonical.

• In order to identify canonical variables and go over to a Lagrangian
description, the Clebsch-type parametrization should be used.

• The non-relativistic perfect fluid dynamics is reproduced for ` = 1
2

• It would be interesting to construct supersymmetric extensions.
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