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Conformal correlators at finite temperature
Consider a correlation function at finite temperature T = β−1 of a scalar primary ϕR×SD−1(τ,Ω)
on a D-dimensional cylinder ds2R×SD−1 = dτ2 + dΩ2

D−1

⟨ϕR×SD−1(τ,Ω)⟩β = TrH
[
ϕR×SD−1(τ,Ω)e−βD

]
, H = ⊕V∆,s .

▶ We focus on scalar modules (s = 0) V∆,s ≡ V∆, constructed from a primary state |∆⟩

D |∆⟩ = ∆ |∆⟩ , Jµν |∆⟩ = 0 , Kµ |∆⟩ = 0 ,

the dilatation operator D is a Hamiltonian within the usual radial quantization.
▶ Descendant states inV∆ at level n = 0, 1, 2, ... are

|∆+ n⟩µ1...µn
= Pµ1 . . .Pµn |∆⟩ , D |∆+ n⟩µ1...µn

= (∆+ n) |∆+ n⟩µ1...µn
.

▶ The thermal correlation function is periodic in time coordinate τ :

⟨ϕR×SD−1(τ,Ω)⟩β = TrH
[
eτDϕR×SD−1(0,Ω)e−τDe−βD

]
= TrH

[
e−βDe(β+τ)DϕR×SD−1(0,Ω)e−(β+τ)D

]
= ⟨ϕR×SD−1(τ + β,Ω)⟩β .

It means that this correlation function is actually defined on S1
β × SD−1

L=1 .
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Thermal Ward identities
The cylinder R× SD−1 is related to RD via the standard map r = eτ , where r2 = xµxµ. For a
primary ϕR×SD−1(τ,Ω) = rhϕ(x) of conformal dimension h one has

⟨ϕR×SD−1(τ,Ω)⟩β = rh TrH
[
ϕ(x)e−βD

]
≡ rh⟨ϕ(x)⟩β .

▶ One can work either in RD or in R× SD−1 coordinates.
▶ We use ∆ for internal and h for external dimensions.
▶ Introducing temperature partially breaks conformal invariance O(D + 1, 1) down to a

subgroup. Namely, consider the following manipulation

TrH
[
Dϕ(x)e−βD

]
= TrH

[
[D, ϕ(x)]e−βD

]
+ TrH

[
ϕ(x)e−βDD

]
= D⟨ϕ(x)⟩β + TrH

[
Dϕ(x)e−βD

]
⇒

▶ Thermal Ward idetities = residual symmetry O(1, 1)⊕ O(D) of the thermal correlator

D ⟨ϕ(x)⟩β = 0 , Jµν ⟨ϕ(x)⟩β = 0 .

In cylindrical coordinates D = ∂τ ⇒ ⟨ϕR×SD−1(τ,Ω)⟩β is τ independent.
▶ The high-temperature (β → 0) limit partially recovers conformal invariance(L.Iliesiu, et.al

2018)
lim

L→∞
⟨ϕ⟩S1

β
×SD−1

L
= ⟨ϕ⟩S1

β
×RD−1 .

⇒ ⟨ϕ⟩S1
β
×RD−1 is fixed by symmetry up to a (model-dependent) constant.
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Thermal conformal blocks
The thermal correlator can be expanded in conformal blocks

⟨ϕ(x)⟩β =
∑
∆

C∆,h,∆Fh
∆(q, x) + spinning contributions .

The scalar thermal conformal block here is a power series in q = exp(−β)

Fh
∆(q, x) = (C∆,h,∆)−1

∞∑
n=0

q∆+n (B−1
∆

)µ1...µn;ν1...νn
ν1...νn⟨∆+ n|ϕ(x)|∆+ n⟩µ1...µn ,

where Bν1...νn;µ1...µn = ν1...νn⟨∆+ n|∆+ n⟩µ1...µn is a Gram matrix in V∆ at n-th level.

▶ The low-temperature (β → ∞) limit: Fh
∆(q, x) = q∆(1 + . . .) as q → 0.

▶ Ward identities fix the x-dependence of the thermal conformal block.

How one can calculate thermal conformal blocks?
▶ Direct calculation of the matrix elemets ⇒ quickly becomes complicated.
▶ Casimir equations (Y.Gobeil, et.al 2018)

TrH
[
C2ϕ(x)e−βD

]
= ∆(D −∆)⟨ϕ(x)⟩β ,

⇒ tractable only in D = 2 (P. Kraus, et.al 2017, K. Alkalaev, SM, M. Pavlov 2022).
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Shadow formalism
For a scalar primary operator O∆(x) ≡ O(x) one defines the shadow operator (S. Ferrara et.al ’70)

Õ(x) = N∆

∫
RD

dDx0 (x0 − x)−2∆̃ O(x0) , N∆ = π−D Γ(∆)Γ(∆̃)

Γ(D
2
−∆)Γ(D

2
− ∆̃)

,

which is a primary operator of (dual/shadow) conformal dimension ∆̃ = D −∆.
This allows one to construct a projecting operator

Π∆ =

∫
RD

dDxO(x)|0⟩⟨0|Õ(x) , Π∆nΠ∆m = δ∆n∆mΠ∆m .

Inserting the projector into the 4-point correlation function of primary scalar operators
ϕhi(xi) ≡ ϕi(xi) one finds

⟨ϕ1(x1)ϕ2(x2)Π∆ϕ3(x3)ϕ4(x4)⟩ =
∫
RD

dDx0⟨ϕ1ϕ2O(x0)⟩⟨Õ(x0)ϕ3ϕ4⟩

= Ch1,h2,∆C∆,h3,h4Ψ
h1,h2,h3,h4
∆ (x1, x2, x3, x4) .

▶ The 4-point conformal partial wave (CPW) Ψh1,h2,h3,h4
∆ is a linear combination of the

conformal and shadow blocks (e.g. D. Simmons-Duffin 2012, V. Rosenhaus 2018)

Ψh1,h2,h3,h4
∆ (x1, x2, x3, x4) = Gh1,h2,h3,h4

∆ (x1, x2, x3, x4)+N∆Kh1,h2
∆ Kh3,h4

∆ Gh1,h2,h3,h4

∆̃
(x1, x2, x3, x4) .
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Conformal integral
Substituting the 3-point function into CPW one finds (x = {x1, x2, x3, x4})

Ψh1,h2,h3,h4
∆ (x1, x2, x3, x4) = N∆Kh3,h4

∆ X
∆−h1−h2

2
12 X

∆̃−h3−h4
2

34 Ia
4(x) , where

▶ Ia
4(x) is a 4-point conformal integral (K. Symanzik 1972)

Ia
4(x) =

∫
RD

dDx0
4∏

i=1

X−ai
0i , where Xij = (xi − xj)

2 , a = {a1, a2, a3, a4} ,
4∑

j=1

aj = D .

▶ It can be expressed in terms of special functions (e.g. F. Dolan, H. Osborn 2000)

Ia
4(x) =

(
1 + C4 + (C4)

2 + (C4)
3) π

D
2 La

4(x)ia
4(u, v)

Γ(a1)Γ(a2)Γ(a3)Γ(a4)
, u =

X12X34

X13X24
, v =

X14X23

X13X24
,

where C4 = (1, 2, 3, 4) is a cyclic permutation.
▶ La

4(x) is the leg-factor responsible for the conformal covariance of Ia
4(x), and

ia
4(u, v) ∼ F4

[
α1, α2

γ1, γ2

∣∣∣∣u, v] , F4

[
α1, α2

γ1, γ2

∣∣∣∣u, v] =

∞∑
m1,m2=0

(α1)m1+m2(α2)m2+m1

(γ1)m1(γ2)m2

um1

m1!

vm2

m2!
,

where (α)m = Γ(α+ m)/Γ(α), and αi, γj are expressed in terms of ak.
▶ This allows one to express Gh

∆ in terms of fourth Appell function F4.
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Thermal shadow formalism
Let us generalise the presented construction to thermal correlators. To this end, consider

TrH
[
Π∆ϕ(x)qD

]
=

∫
RD

dDx0
∑
∆1

∞∑
n=0

(
B−1

∆1

)µ1...µn;ν1...νn

× ν1...νn⟨∆1 + n|O(x0) |0⟩ ⟨0| Õ(x0)ϕ(x)qD|∆1 + n⟩µ1...µn ,

where we focused again on scalar modules. After some manipulations we find that

Tr
[
Π∆ϕ(x)qD

]
= q∆

∫
Rd

dDx0⟨Õ(x0)ϕ(x)O(qx0)⟩

= C∆,h,∆Υh
∆(q, x) .

▶ The 1-point thermal conformal partial wave is

Υh
∆(q, x) = N∆ Kh,∆

∆̃

qD−h−∆

(1− q)D−h Ta1,a2;a0
2 (x/q, x) ,

where we have defined the thermal conformal integral

Ta1,a2;a0
2 (x1, x2) =

∫
RD

dDx0X−a1
01 X−a2

02 (x20)−a0 , a1 + a2 + 2a0 = D .
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Thermal conformal block

The expression for Ta1,a2;a0
2 is known in terms of F4 (E. Boos, A. Davydychev 1987), but it is also

given by the limit of the conformal integral

Ta1,a2;a0
2 (x1, x2) = lim

x3→0
x4→∞

(
X−a1

14 X
D
2
−a2−a4

24 X
D
2
−a3−a4

34

)−1

Ia1,a2,a0,a0
4 (x1, x2, x3, x4) .

▶ Partial breaking conformal invariance by fixing two points x3 = 0 and x4 = ∞ ⇐⇒ the
residual symmetry (O(1, 1)⊕ O(D)) of the thermal correlation function.

▶ ⇒ Υh
∆(q, x) is a linear combination of thermal conformal and shadow blocks

Υh
∆(q, x) = Fh

∆(q, x) + Kh,∆
∆ Kh̃,∆

∆ N∆ Fh
∆̃(q, x) ,

where the 1-point thermal block Fh
∆ is expressed through F4:

rh Fh
∆(q, x) = Γ(∆)Γ(h − ∆̃)

Γ( h
2
)Γ(∆− h̃

2
)

q∆(1− q)−h F4

[
∆− h

2
, D

2
− h

2

1 + D
2
− h , 1− D

2
+∆

∣∣∣∣(1− q)2 , q2
]

+(h → h̃ = D − h) .
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Outlooks
The elaborated techniques can be extended in several directions
▶ One can consider operators with spin, e.g., for spin-1 exchange the shadow operator reads as

Õµ(x) = N∆,s=1

∫
RD

dDx0 (x0 − x)−2∆̃ Iµν(x0 − x)Oν(x0) , Iµν(x) = δµν − 2xµxν/r2 .

⇒ It complicates the integrals to be calculated.
▶ One can generalize the thermal correlator, by adding chemical potentials, e.g.

⟨ϕ(x)⟩β,µ ≡ TrH
[
ϕ(x)e−βDe−iµJ12

]
.

⇒ It complicates the x-dependence of the thermal conformal block, but the Casimir equations
can be written (Y.Gobeil, et.al 2018, I. Buric, et.al 2024).

▶ One can consider the multipoint thermal correlators:

⟨ϕ1(x1)...ϕn(xn)⟩β = TrH
[
ϕ1(x1)...ϕn(xn)e−βD

]
.

⇒ It requires knowledge of the multipoint conformal integrals, but there is a partial result in
D = 2 (K. Alkalaev, SM 2023)

Fh1,...,hn
∆1,...,∆n(q, z1, ..., zn) ∼ FN

[
a1, ..., an
c1, ..., cn

∣∣∣∣ρ1, ..., ρn

]
, where FN is a hypergeometric type function.
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Thank you for your attention!
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