ONE-POINT THERMAL CONFORMAL BLOCKS FROM FOUR-POINT CONFORMAL INTEGRALS

Semyon Mandrygin

Lebedev Physical Institute

Efim Fradkin centennial conference 2024

Based on: 2407.01741 Konstantin Alkalaev, SM

Efim Fradkin and CFT_D

Mathematics and Its Applications

Efim S. Fradkin and Mark Ya. Palchik

Conformal **Quantum Field Theory** in D-dimensions

Springer-Science+Business Media, B.V.

		PHYSICS REPO	RTS
ELSEVER Physics R	Physics Reports 200 (1998) 1-111		-
New developme qu	nts in D antum f	-dimensional conformal ield theory	
ESE	radkin*.b.+	M Va Palchike	
* Theoretical Diri * Lebodev P * Lebodev P * Institute of Automat	sion, CERN, C hysical Institut tion and Electro	H-1211 Genera 23, Switzerland n, Mascow 117924, Rawia ometry. Norosifirth 630000, Rawia	
Received	October 1997	editor: A. Schwimmer	
Contents			
1. Interdention		2.7 Wood identities for the momentum of	
1.1 Preliminary nemarks		irreducible fields 7 and 7	45
12 Conformal symmetry in D dimension		3. Hilbert anace of conformal field theory in	
13 Conformal partners and amputation		D dimensions	47
conditions	9	31 Model-independent assumptions	
1.4. Conformal partial wave expansions in	1	Secondary fields	48
Minkowski space	12	3.2. Green functions of secondary fields	53
1.5. Conformal partial wave expansions or	£	3.3. Dynamical sector of the Hilbert space	54
Euclidean Green functions	13	3.4. Null states of dynamical sector	58
2. Conformally invariant solution of the Wa	rd	Examples of exactly solvable models	
identities	23	in D-dimensional space	62
2.1. Definition of conserved currents and		4.1. A model of a scalar field	62
energy-momentum tensor in Euclidea	10	A model in the space of even dimension	
conformal field theory	23	$D \ge 4$ defined by two generations of	
2.2. The Green functions of the current	25	secondary fields	63
2.5. The solution of the Ward identifies to	r the	4.3. Primary and secondary fields	70
Green functions of irreducible comort	Tall	4.4. A model of two scalar nears in	
current	30	D-diricitional space	15
24. Green functions of the energy-moment	num	4.3. Two-efficiencial conformal models	15
tensor and conditions of absence of		5. Conformal invariance in gauge meones	78
province of a character of Wood	33	 memory or one Gauge interactions Conformal immediate of the second second	18
2.5. The agommin of sourced of ware	22	5.2. Conformal transformations of the gauge	
2.6 Conformed Ward identities in two-	-35	5.3 Interview of the constanting functional of	
dimensional field theory	41	a manage field in a non-Abelian coat	82
 Consermat ward identifies in two- dimensional field theory 	41	3.3. invariance of the generating buildsonal of a gauge field in a non-Abelian case	

*Corresponding author. e-mail: fradkina@mathias.edu

NH

0370-1573/98/\$19.00 Copyright @ 1998 Elsevier Science B.V. All rights reserved PH \$0370,1573(97)00085.9

PHYSICS EFFORTS (Review Section of Physics Letters) 44 No. 5 (1975) 349-349 North-Hellard Publishing Computer

RECENT DEVELOPMENTS IN CONFORMAL INVARIANT QUANTUM FIELD THEORY

E.S. FRADKIN

P.N. Labolar Physical Institute of the USSR Academy of Sciences, Mancow, USSR

and

M.Ya. PALCHIK Institute of Automation and Decrementy of the USSR Academy of Sciences, Necosibirsi, USSR

Received 12 October 1977

A minute of the exercit results concerning the kinematics of conformal fields, the analysis of dynamical constitues and dynamical

A report of the reterr robust contempting the internation at contermat torus, see manyou or optimized equations and systemized deviation of the optimized protection of fields which are transformed according to the proposations of the universal optimized and transformational properties of fields which are transformed according to the protocol action of the universal optimized and transformation of the Euclidean down in of contribution of the partial wave reponsitor of Wightman functions in gives. The analytical continuation to the Euclidean down in of contribution of down of the down of the partial wave regulation can be applied after to compare for therefore on the General Euclidean space the down of one of the context of the space.

e tests. The structure of Green functions, which contain a conserved current and the energy-momentum tessor, has been studied. Their

at loadcadu gootta tarimig on hier light-hand salos is discioned. A nope hor calculating the protect is proven it is shown, thus The other discioned is the light-hand salos is discioned. A nope hor calculating the protect is proven it is shown, thus The other discioned is the light-hand salos is discioned for sumscernarialised fields in discioned in concerning with the problem of the field product determination at conciding priorit. As a result material relative between hondaneetial field dimensions is from the ranson therefore interaction for scienciding priorit. As a result material relative between hondaneetial field dimensions is from the ranson therefore interactions for scienciding priorits. As a result material was a science of dimension at priority of the field product determination. It and appendix of the produces of change in offering training dimensions in from the priority. received. Al above said results are domonstrated using Thirring model as an example. A new approach to its salting is descloped.

At above sub-meaks are demonstrated using Thering model is an example. A new approach to its satisfies a devolution. The program of closing the infinite system of dynamical equations is discussed. The Thirring model is considered so an example. A new approach to the solution of this model is discussed.

A new approach is the solution of this model is decisional. Methods are developed for the approximate columbiation of dimensional and coupling constants in the 3-vertex and 5-vertex ap-proximations. The dimensions are calculated in the Jap⁺ theory in 6-dimensional spectrum approximate of the calculation of the The problem of calculating the related indices in a statistics 1-dimensional Buchleau space is considered. The calculation of the

Single orders for this issue

PHYSICS REPORTS (Review Section of Physics Lenzes) 44, No. 5 (1978) 249-348.

Single issue price DE. 45.00, postage included.

- ▶ One-point conformal correlators at finite temperature
- ▶ Thermal shadow formalism
- Conformal integrals
- One-point thermal conformal block
- Outlooks

Conformal correlators at finite temperature

Consider a correlation function at finite temperature $T = \beta^{-1}$ of a scalar primary $\phi_{\mathbb{R}\times\mathbb{S}^{D-1}}(\tau,\Omega)$ on a *D*-dimensional cylinder $ds^2_{\mathbb{R}\times\mathbb{S}^{D-1}} = d\tau^2 + d\Omega^2_{D-1}$

$$\langle \phi_{\mathbb{R}\times\mathbb{S}^{D-1}}(\tau,\Omega) \rangle_{\beta} = \operatorname{Tr}_{\mathcal{H}}\left[\phi_{\mathbb{R}\times\mathbb{S}^{D-1}}(\tau,\Omega) e^{-\beta D} \right], \qquad \mathcal{H} = \oplus V_{\Delta,s}.$$

• We focus on scalar modules (s = 0) $V_{\Delta,s} \equiv V_{\Delta}$, constructed from a primary state $|\Delta\rangle$

$$D |\Delta\rangle = \Delta |\Delta\rangle$$
, $J_{\mu\nu} |\Delta\rangle = 0$, $K_{\mu} |\Delta\rangle = 0$,

the dilatation operator D is a Hamiltonian within the usual radial quantization.

▶ Descendant states in V_{Δ} at level n = 0, 1, 2, ... are

$$\left|\Delta+n\right\rangle_{\mu_{1}...\mu_{n}}=P_{\mu_{1}}\ldots P_{\mu_{n}}\left|\Delta\right\rangle,\quad D\left|\Delta+n\right\rangle_{\mu_{1}...\mu_{n}}=\left(\Delta+n\right)\left|\Delta+n\right\rangle_{\mu_{1}...\mu_{n}}.$$

The thermal correlation function is periodic in time coordinate τ :

$$\begin{split} \langle \phi_{\mathbb{R}\times\mathbb{S}^{D-1}}(\tau,\Omega) \rangle_{\beta} &= \mathrm{Tr}_{\mathcal{H}} \left[e^{\tau D} \phi_{\mathbb{R}\times\mathbb{S}^{D-1}}(0,\Omega) e^{-\tau D} e^{-\beta D} \right] \\ &= \mathrm{Tr}_{\mathcal{H}} \left[e^{-\beta D} e^{(\beta+\tau)D} \phi_{\mathbb{R}\times\mathbb{S}^{D-1}}(0,\Omega) e^{-(\beta+\tau)D} \right] = \langle \phi_{\mathbb{R}\times\mathbb{S}^{D-1}}(\tau+\beta,\Omega) \rangle_{\beta} \,. \end{split}$$

It means that this correlation function is actually defined on $S^1_{\beta} \times S^{D-1}_{L=1}$.

Thermal Ward identities

The cylinder $\mathbb{R} \times \mathbb{S}^{D-1}$ is related to \mathbb{R}^D via the standard map $r = e^{\tau}$, where $r^2 = x_{\mu}x^{\mu}$. For a primary $\phi_{\mathbb{R} \times \mathbb{S}^{D-1}}(\tau, \Omega) = r^h \phi(x)$ of conformal dimension h one has

$$\langle \phi_{\mathbb{R} \times \mathbb{S}^{D-1}}(\tau, \Omega) \rangle_{\beta} = r^h \operatorname{Tr}_{\mathcal{H}} \left[\phi(x) e^{-\beta D} \right] \equiv r^h \langle \phi(x) \rangle_{\beta} \,.$$

- ▶ One can work either in \mathbb{R}^D or in $\mathbb{R} \times \mathbb{S}^{D-1}$ coordinates.
- We use Δ for internal and h for external dimensions.
- ▶ Introducing temperature partially breaks conformal invariance O(D+1, 1) down to a subgroup. Namely, consider the following manipulation

$$\begin{aligned} \operatorname{Tr}_{\mathcal{H}}\left[D\phi(x)e^{-\beta D}\right] &= \operatorname{Tr}_{\mathcal{H}}\left[[D,\phi(x)]e^{-\beta D}\right] + \operatorname{Tr}_{\mathcal{H}}\left[\phi(x)e^{-\beta D}D\right] \\ &= \mathcal{D}\langle\phi(x)\rangle_{\beta} + \operatorname{Tr}_{\mathcal{H}}\left[D\phi(x)e^{-\beta D}\right] \Rightarrow \end{aligned}$$

▶ Thermal Ward identities = residual symmetry $O(1,1) \oplus O(D)$ of the thermal correlator

$$\mathcal{D} \langle \phi(x) \rangle_{\beta} = 0$$
, $\mathcal{J}_{\mu\nu} \langle \phi(x) \rangle_{\beta} = 0$.

In cylindrical coordinates $\mathcal{D} = \partial_{\tau} \Rightarrow \langle \phi_{\mathbb{R} \times \mathbb{S}^{D-1}}(\tau, \Omega) \rangle_{\beta}$ is τ independent.

► The high-temperature $(\beta \rightarrow 0)$ limit partially recovers conformal invariance(L.Iliesiu, et.al 2018)

$$\lim_{L \to \infty} \langle \phi \rangle_{S^1_\beta \times S^{D-1}_L} = \langle \phi \rangle_{S^1_\beta \times \mathbb{R}^{D-1}} \,.$$

 $\Rightarrow \langle \phi \rangle_{S^1_\beta \times \mathbb{R}^{D-1}}$ is fixed by symmetry up to a (model-dependent) constant.

Thermal conformal blocks

The thermal correlator can be expanded in conformal blocks

$$\langle \phi(x) \rangle_{\beta} = \sum_{\Delta} C_{\Delta,h,\Delta} \mathcal{F}^{h}_{\Delta}(q,x) + \text{ spinning contributions }.$$

The scalar thermal conformal block here is a power series in $q = \exp(-\beta)$

$$\mathcal{F}^{h}_{\Delta}(q,x) = (C_{\Delta,h,\Delta})^{-1} \sum_{n=0}^{\infty} q^{\Delta+n} \left(B_{\Delta}^{-1} \right)^{\mu_1 \dots \mu_n; \nu_1 \dots \nu_n} {}_{\nu_1 \dots \nu_n} \langle \Delta+n | \phi(x) | \Delta+n \rangle_{\mu_1 \dots \mu_n} ,$$

where $B_{\nu_1...\nu_n;\mu_1...\mu_n} = {}_{\nu_1...\nu_n} \langle \Delta + n | \Delta + n \rangle_{\mu_1...\mu_n}$ is a Gram matrix in V_{Δ} at *n*-th level.

- ▶ The low-temperature $(\beta \to \infty)$ limit: $\mathcal{F}^h_\Delta(q, x) = q^\Delta(1 + ...)$ as $q \to 0$.
- ▶ Ward identities fix the *x*-dependence of the thermal conformal block.

How one can calculate thermal conformal blocks?

- ▶ Direct calculation of the matrix elemets \Rightarrow quickly becomes complicated.
- ► Casimir equations (Y.Gobeil, et.al 2018)

$$\operatorname{Tr}_{\mathcal{H}}\left[C_{2}\phi(x)e^{-\beta D}\right] = \Delta(D-\Delta)\langle\phi(x)\rangle_{\beta},$$

 \Rightarrow tractable only in D=2 (P. Kraus, et.al 2017, K. Alkalaev, SM, M. Pavlov 2022).

Shadow formalism

For a scalar primary operator $\mathcal{O}_{\Delta}(x) \equiv \mathcal{O}(x)$ one defines the shadow operator (S. Ferrara et.al '70)

$$\widetilde{\mathcal{O}}(x) = N_{\Delta} \int_{\mathbb{R}^{D}} \mathrm{d}^{D} x_{0} \left(x_{0} - x \right)^{-2\tilde{\Delta}} \mathcal{O}(x_{0}), \qquad N_{\Delta} = \pi^{-D} \frac{\Gamma(\Delta) \Gamma(\tilde{\Delta})}{\Gamma(\frac{D}{2} - \Delta) \Gamma(\frac{D}{2} - \tilde{\Delta})},$$

which is a primary operator of (dual/shadow) conformal dimension $\tilde{\Delta} = D - \Delta$. This allows one to construct a projecting operator

$$\Pi_{\Delta} = \int_{\mathbb{R}^D} \mathrm{d}^D x \mathcal{O}(x) |0\rangle \langle 0| \widetilde{\mathcal{O}}(x) , \qquad \Pi_{\Delta_n} \Pi_{\Delta_m} = \delta_{\Delta_n \Delta_m} \Pi_{\Delta_m} .$$

Inserting the projector into the 4-point correlation function of primary scalar operators $\phi_{h_i}(x_i) \equiv \phi_i(x_i)$ one finds

$$\begin{aligned} \langle \phi_1(x_1)\phi_2(x_2)\Pi_{\Delta}\phi_3(x_3)\phi_4(x_4) \rangle &= \int_{\mathbb{R}^D} \mathrm{d}^D x_0 \langle \phi_1\phi_2 \mathcal{O}(x_0) \rangle \langle \widetilde{\mathcal{O}}(x_0)\phi_3\phi_4 \rangle \\ &= C_{h_1,h_2,\Delta} C_{\Delta,h_3,h_4} \Psi_{\Delta}^{h_1,h_2,h_3,h_4}(x_1,x_2,x_3,x_4) \end{aligned}$$

The 4-point conformal partial wave (CPW) Ψ^{h1,h2,h3,h4} is a linear combination of the conformal and shadow blocks (e.g. D. Simmons-Duffin 2012, V. Rosenhaus 2018)

$$\Psi_{\Delta}^{h_1,h_2,h_3,h_4}(x_1,x_2,x_3,x_4) = G_{\Delta}^{h_1,h_2,h_3,h_4}(x_1,x_2,x_3,x_4) + N_{\Delta}K_{\Delta}^{h_1,h_2}K_{\Delta}^{h_3,h_4}G_{\tilde{\Delta}}^{h_1,h_2,h_3,h_4}(x_1,x_2,x_3,x_4) \,.$$

Conformal integral

Substituting the 3-point function into CPW one finds $(\mathbf{x} = \{x_1, x_2, x_3, x_4\})$

$$\Psi_{\Delta}^{h_1,h_2,h_3,h_4}(x_1,x_2,x_3,x_4) = N_{\Delta}K_{\Delta}^{h_3,h_4} X_{12}^{\frac{\Delta-h_1-h_2}{2}} X_{34}^{\frac{\bar{\Delta}-h_3-h_4}{2}} I_4^a(\boldsymbol{x}), \qquad \text{where}$$

▶ $I_4^a(\mathbf{x})$ is a 4-point conformal integral (K. Symanzik 1972)

$$I_4^{\boldsymbol{a}}(\boldsymbol{x}) = \int_{\mathbb{R}^D} \mathrm{d}^D x_0 \prod_{i=1}^4 X_{0i}^{-a_i}, \quad \text{where } X_{ij} = (x_i - x_j)^2, \quad \boldsymbol{a} = \{a_1, a_2, a_3, a_4\}, \quad \sum_{j=1}^4 a_j = D.$$

▶ It can be expressed in terms of special functions (e.g. F. Dolan, H. Osborn 2000)

$$I_4^a(\mathbf{x}) = \left(1 + C_4 + (C_4)^2 + (C_4)^3\right) \frac{\pi^{\frac{D}{2}} L_4^a(\mathbf{x}) i_4^a(u, v)}{\Gamma(a_1) \Gamma(a_2) \Gamma(a_3) \Gamma(a_4)}, \quad u = \frac{X_{12} X_{34}}{X_{13} X_{24}}, \quad v = \frac{X_{14} X_{23}}{X_{13} X_{24}},$$

where $C_4 = (1, 2, 3, 4)$ is a cyclic permutation.

 \blacktriangleright $L_4^a(\mathbf{x})$ is the leg-factor responsible for the conformal covariance of $I_4^a(\mathbf{x})$, and

$$i_4^a(u,v) \sim F_4 \begin{bmatrix} \alpha_1, \alpha_2 \\ \gamma_1, \gamma_2 \end{bmatrix} | u, v \end{bmatrix}, \quad F_4 \begin{bmatrix} \alpha_1, \alpha_2 \\ \gamma_1, \gamma_2 \end{bmatrix} | u, v \end{bmatrix} = \sum_{m_1, m_2=0}^{\infty} \frac{(\alpha_1)_{m_1+m_2}(\alpha_2)_{m_2+m_1}}{(\gamma_1)_{m_1}(\gamma_2)_{m_2}} \frac{u^{m_1}}{m_1!} \frac{v^{m_2}}{m_2!},$$

where $(\alpha)_m = \Gamma(\alpha + m)/\Gamma(\alpha)$, and α_i, γ_j are expressed in terms of a_k . This allows one to express G^h_{Δ} in terms of fourth Appell function F_4 .

Thermal shadow formalism

Let us generalise the presented construction to thermal correlators. To this end, consider

$$\operatorname{Tr}_{\mathcal{H}}\left[\Pi_{\Delta}\phi(x)q^{D}\right] = \int_{\mathbb{R}^{D}} \mathrm{d}^{D}x_{0} \sum_{\Delta_{1}} \sum_{n=0}^{\infty} \left(B_{\Delta_{1}}^{-1}\right)^{\mu_{1}\dots\mu_{n};\nu_{1}\dots\nu_{n}} \\ \times_{\nu_{1}\dots\nu_{n}} \langle \Delta_{1} + n | \mathcal{O}(x_{0}) | 0 \rangle \langle 0 | \widetilde{\mathcal{O}}(x_{0})\phi(x)q^{D} | \Delta_{1} + n \rangle_{\mu_{1}\dots\mu_{n}},$$

where we focused again on scalar modules. After some manipulations we find that

$$\operatorname{Tr}\left[\Pi_{\Delta}\phi(x)q^{D}\right] = q^{\Delta} \int_{\mathbb{R}^{d}} \mathrm{d}^{D}x_{0} \langle \widetilde{\mathcal{O}}(x_{0})\phi(x)\mathcal{O}(qx_{0}) \rangle$$
$$= C_{\Delta,h,\Delta}\Upsilon^{h}_{\Delta}(q,x) \,.$$

▶ The 1-point thermal conformal partial wave is

$$\Upsilon^{h}_{\Delta}(q,x) = N_{\Delta} \, K^{h,\Delta}_{\tilde{\Delta}} \, \frac{q^{D-h-\Delta}}{(1-q)^{D-h}} \, \, T^{a_{1},a_{2};a_{0}}_{2}(x/q,x) \, ,$$

where we have defined the thermal conformal integral

$$T_2^{a_1,a_2;a_0}(x_1,x_2) = \int_{\mathbb{R}^D} \mathrm{d}^D x_0 X_{01}^{-a_1} X_{02}^{-a_2} (x_0^2)^{-a_0}, \qquad a_1 + a_2 + 2a_0 = D.$$

Thermal conformal block

The expression for $T_2^{a_1,a_2;a_0}$ is known in terms of F_4 (E. Boos, A. Davydychev 1987), but it is also given by the limit of the conformal integral

$$T_2^{a_1,a_2;a_0}(x_1,x_2) = \lim_{\substack{x_3 \to 0 \\ x_4 \to \infty}} \left(X_{14}^{-a_1} X_{24}^{\frac{D}{2}-a_2-a_4} X_{34}^{\frac{D}{2}-a_3-a_4} \right)^{-1} I_4^{a_1,a_2,a_0,a_0}(x_1,x_2,x_3,x_4) \,.$$

- ▶ Partial breaking conformal invariance by fixing two points $x_3 = 0$ and $x_4 = \infty \iff$ the residual symmetry $(O(1,1) \oplus O(D))$ of the thermal correlation function.
- $\blacktriangleright \Rightarrow \Upsilon^h_\Delta(q, x)$ is a linear combination of thermal conformal and shadow blocks

$$\Upsilon^{h}_{\Delta}(q,x) = \mathcal{F}^{h}_{\Delta}(q,x) + K^{h,\Delta}_{\Delta}K^{\tilde{h},\Delta}_{\Delta}N_{\Delta}\mathcal{F}^{h}_{\tilde{\Delta}}(q,x) \,,$$

where the 1-point thermal block \mathcal{F}^h_Δ is expressed through F_4 :

$$r^{h} \mathcal{F}^{h}_{\Delta}(q,x) = \frac{\Gamma(\Delta)\Gamma(h-\tilde{\Delta})}{\Gamma(\frac{h}{2})\Gamma(\Delta-\frac{\tilde{h}}{2})} q^{\Delta}(1-q)^{-h} F_{4} \begin{bmatrix} \Delta - \frac{h}{2}, \frac{D}{2} - \frac{h}{2} \\ 1 + \frac{D}{2} - h, 1 - \frac{D}{2} + \Delta \end{bmatrix} (1-q)^{2}, q^{2} \end{bmatrix}$$
$$+ (h \to \tilde{h} = D - h).$$

Outlooks

The elaborated techniques can be extended in several directions

▶ One can consider operators with spin, e.g., for spin-1 exchange the shadow operator reads as

$$\widetilde{\mathcal{O}}_{\mu}(x) = N_{\Delta,s=1} \int_{\mathbb{R}^{D}} \mathrm{d}^{D} x_{0} \left(x_{0} - x \right)^{-2\tilde{\Delta}} \mathcal{I}_{\mu\nu}(x_{0} - x) \mathcal{O}^{\nu}(x_{0}) , \qquad \mathcal{I}_{\mu\nu}(x) = \delta_{\mu\nu} - 2x_{\mu}x_{\nu}/r^{2} .$$

 \Rightarrow It complicates the integrals to be calculated.

• One can generalize the thermal correlator, by adding chemical potentials, e.g.

$$\langle \phi(x) \rangle_{\beta,\mu} \equiv \operatorname{Tr}_{\mathcal{H}} \left[\phi(x) e^{-\beta D} e^{-i\mu J_{12}} \right] \,.$$

 \Rightarrow It complicates the *x*-dependence of the thermal conformal block, but the Casimir equations can be written (Y.Gobeil, et.al 2018, I. Buric, et.al 2024).

• One can consider the multipoint thermal correlators:

$$\langle \phi_1(x_1)...\phi_n(x_n) \rangle_{\beta} = \operatorname{Tr}_{\mathcal{H}} \left[\phi_1(x_1)...\phi_n(x_n) e^{-\beta D} \right] .$$

 \Rightarrow It requires knowledge of the multipoint conformal integrals, but there is a partial result in D = 2 (K. Alkalaev, SM 2023)

$$\mathcal{F}_{\Delta_1,...,\Delta_n}^{h_1,...,h_n}(q,z_1,...,z_n) \sim F_N \begin{bmatrix} a_1,...,a_n \\ c_1,...,c_n \end{bmatrix} \rho_1,...,\rho_n \end{bmatrix}, \text{ where } F_N \text{ is a hypergeometric type function.}$$

Thank you for your attention!