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The beauty of 2D conformal theories

e Belavin-Polyakov-Zamolodchikov (1984):
Virasoro algebra — Kac spectrum of the minimal models
e Knizhnik-Polyakov-Zamolodchikov (1988):
SL(2; R) Kac-Moody spectrum for the Liouville action
(thanks to diffeomorphysm invariance)

The number of surfaces of large area A embedded in d dimensions

(3 3 a)) s

with string susceptibility index of (closed) Polyakov's string

25 —d 25—-d)(1 —d
Ystr = (h — 1) +\/(12 A )

(gravitational dressing of the unit operator).
It is not real for 1 <d <25 (d= 1 barrier)
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(gravitational dressing of the unit operator).
It is not real for 1 <d <25 (d= 1 barrier)

Real in d = 4 for the four-derivative Liouville theory and agrued
to describe the Nambu-Goto string with d_ = 15 — 46 > 4
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Content of the talk

e Nambu-Goto and Polyakov strings

e Generalized conformal anomaly (“massive” CFTs)
path-integrating over X# and ghosts
tracelessness of improved energy-momentum tensor
equivalence with four-derivative Liouville action
Salieri’s check at one loop

e EXxact solution and minimal models
singular products and universality of higher-derivative actions
BPZ null vectors and Kac’'s spectrum
Nambu-Goto string in d=4 as (4,3) minimal model



Nambu-Goto and Polyakov strings

Nambu-Goto string (imaginary Lagrange multiplier A“b) independent
metric tensor g, Alvarez (1981)

K
KO/ d%w \/det 9o X - 9,X = Ko/ 42w @+7°/ d2w AL (8.X - 8,X — gop)
Ground state A% = X,/gg? classically X = 1 == Polyakov string

K
§==0 / 02w /590X - 8, X

Equivalence: classically Polyakov (1981), one loop Fradkin-Tseytlin (1982).

Closed bosonic string winding once around dimension
of circumference 3, propagating (Euclidean) time L with topology of
cylinder or torus (bagel). No tachyon if g is

Gaussian path integral over X4 by splitting X# = X£ + X =
Emergent (or effective) action

K
Sle.A") = Ko [ d?wyg+ =0 [ d?wr™ (0aXa - 9pXal — ga1)

d 1
Ztrlog | ———8,2%9 hosts
+2 g ( \/g a b) + g

Mean-field ground state with A < Ay = 1 is stable in 2 < d < 26



2. "Massive” CFTs



Generalized conformal anomaly

Path-integrating over X# (and the usual ghosts)

1
S[Qaba )\ab] — KO/ (\/§ — EAabgab) + Sx [gaba )\ab],

S =—/— R-R— (B\%g R+ 22V, 8, ~ R
X = 56r [ et b + Vg A (BAgap R + a0 )

higher orders in Schwinger’'s proper-time ultraviolet cutoff = dropped.
8 =1 for the Nambu-Goto string but kept arbitrary for generality.
The action is derived from the DeWitt-Seeley expansion of

O = —(/9) 10,28, = —h™®8,0, + A%,

(|7 = .=+ 5= (RO + B4 ) + 0(r)

AT
Alternatively Coleman-\Weinberg's effective action integrating out Xéj

d 1
—trin [——8a>\abﬁb] =
2 V9 reg

wavy lines correspond to fluctuations §\%° or dg,;, about ground state



Covariant Pauli-Villars regularization

Schwinger proper-time regularization of the trace

— codr —70 2 __ 1
triog Oleq = _/a2 Ttre , N = o
Pauli-Villars regularization of the trace
det(O) det(O 4+ 2M?2) 5  M?
det(O = : N =——l0g2
( )|reg det(O + M?2)2 27 J

triog Olieg = —/Ood—Ttre_TO (1 — e_TM2>2, <| e_TOD —— + ...

0O 7 AT
Diaz, Troost, van Nieuwenhuizen, Van Proeyen (1989)
Covariant Pauli-Villars regulator Y (preserves conformal invariance)

_ _ 1
s(reg) :/(/\ab 8aY - Y + | M2 /g|V - Y + 5,\ab 8aZ - Z +| M2/g 22)

Two anticommuting Grassmann Y and Y of mass squared M2 and
one Z of mass squared 2M?2 with normal statistics:

Advantages over the proper-time regularization:
Feynman's diagrams apply for Pauli-Villars regularization
Gel'fand-Yaglom technigue to compare with DeWitt-Seeley expansion



Conformal gauge and flat background

Emergent action becomes local in conformal gauge

9ab = Yab e’
where g, is background (or fiducial) metric tensor.
Usual ghosts and their usual contribution to effective action

Euclidean CFT: conformal coordinates z and z in flat background
922 =057 =0, g, =9z, = 1/2 (8 =1 for the Nambu-Goto string)

= 1 3de?¥ —
Slo A% = K /e*p 1— N2 —/ _ d — 26)009
[, A™] 0 ( syl azm-l-( )pddp

+dr(2(1 4 BNTFOF + NPV e + N7V Hp)]
V = 0 — 0y is covariant derivative in conformal gauge so it describes
a theory with interaction (no such interaction if only \*? = X% ;)

Subtleties because of nonminimal interaction with background gravity

ViR = /5 (R-Ayp)

It vanishes only if the background curvature R vanishes



Improved energy-momentum tensor

Callan-Coleman-Jackiw (1970)
Symmetric minimal energy-momentum tensor (by applying 5/5§“b)

zz 24 (Op) ___I' 24[ ( _:" B) 9_0_
+ON*20p — ON*FOp — 20200 + 2X** 00 ]
. _ ¥ - o= e
TN = gper(1— AT — 9 + P53 5,

2a2+v/det \** 24
is conserved obeying 97N 4 (’9T5(;nin) — 0 but not traceless.
Improved e-m tensor is given by the sum T, = Ta(gm”) + Tcgfdd)

(add) - (d—=26),o, dr 2127 | AR\ZZ 775
sl = e 82 —24[(1+6)a/\ + 00X* 4 9(AFy)|
o K 1 3\2z2 2\ 22
a [5(8 N 4 02 (A 890))]

as a price for 9T, = 0 and T,z = O. ) B B
Also from Nambu-Goto EMT: T, = <>\ZZ8X - 0X + \**0X - 8X>

. . L . X
Non-local term gives classically an addition to Virasoro algebra

1 1
5€Tzz — 6///2—192 —l_ 2£/TZZ —|— S@Tzz - 5//58V)\ZZ



Improved energy-momentum tensor (cont.)

and of classical IEMT follows from
1_ oS oS oS = 0S8
_aTZZ — (9 - — 8— — )\ZZa —— _I_ 8)\2:2: —
s 5g0 5g0 ON?Z PN
(N~ 2 99
_I_ ( )\ZZ) —I_ 5>\ZZ
General property of improved energy-momentum tensor:
T = lg\ab 0S — _g
@ §gab dp

i.e. trace of IEMT = the classical equation of motion for ¢
In quantum theory variations of S replaced by variational derivatives.
IEMT does generate conformal transformation §z = g(z)*

- 1 —
Se== [edr. = | [(5 +€890)—+(€ N 4 £ONTF)

7

5>\ZZ

Classically it produces the right transformation laws of ¢ and A2 with
components A\??, \??, A\?** of conformal weights 1, 0, —1, respectively

*Note A = —(0:LY)N — (9:£2)A% + (8£°)AN® 4 £¢9.0%° under diffeomorphisms




Improved energy-momentum tensor (cont.)

and of classical IEMT follows from
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Equivalence with four-derivative Liouville action

Path integral over A% has a saddle point justified by small a2 at

(8—1)
4

aY
5)\&() —_ \/§a2 (Q(J,Cgbdvcadsp _I_ gabAS0> § _I_ O(&4)

Thus we arrive at four-derivative Liouville action (conformal gauge)

1 ~ oA [ A .
Slel = Tomi2 / \/E[gabaasaﬁbso +ce YAy (Aso — Gg 8a908b90>]
0
with G = —1/3 for the Nambu-Goto string
2_ 6 o 1 2dr2N3
0= ) — 2/5 T T “
26 — d 1+ (14 8)2/2 3G(26 — d)

which was exactly solved previously Y.M. (2023)

Classically higher-derivative terms vanish for smooth sR < 1.
Quantumly quartic derivative provides UV cutoff but also interaction
with coupling ¢ = uncertainties ¢ x c~1 which revive — :
Yet higher terms which are primary scalars like R™ do not change —
universality. gab OapOpp IS NOt primary

Smallness of ¢ is compensated by change of the metric (shift of )



Equivalence with four-derivative Liouville action

Path integral over A% has a saddle point justified by small a2 at

(8—1)
4

Thus we arrive at four-derivative Liouville action (covariant)
1 1 1 1
Sg] = / [—R—R R (R Gg® Oy~ RO —R)]
lg] 16702 Vo |-RR+e + Gg O ROy

with G = —1/3 for the Nambu-Goto string
6 1 2dKk2N\3

2 __ _
D= a ©T 1+ (1+8)2/2° ~ 36(26-4d)"

which was exactly solved previously Y.M. (2023)

6}\&() — —\/§CLQ <gacgbdvcad R_I_ abR> g _|_ O(CL4)
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3. CFT ala KPZ-DDK



Review of KPZ-DDK
Knizhnik-Polyakov-Zamolodchikov (1988), David (1988), Distler-Kawai (1989)

Liouville action in fiducial (or background) metric g,

1 ~/1_ . ~
Sp = ) / \@ <§gab8a903w + quO) + p? / \/5 e’

renormalized parameters b2 and ¢ called “intelligent” one ( ) loop

6
b2 =05+ 003, ¢=1+ O®3), b8=26_d
Energy-momentum pseudotensor
1 —
T = 12 (azsfx‘?zso 2¢07 90) VIR = \@ (¢ — Ap)
_ XA N8 + {:’:&
Background independence:

2
total central charge c = d—26—|—6Z—2—|— 1=0

conformal weight A(e*) = ag — a?b? =1

256 —d  [1—d
—  h= ]/ —— g=14b° fora=1
24 24




EMT for the four-derivative Liouville action

For minimal coupling to gravity
- 1
—455Téz§n ") = Bupdyp — EgabaC@aCSO — 18 Gab — €0apOp A — eBaDpByp
g g
+e9.p0°P0cAp + Egab(ASO)Q — GedapOpp A + G§3a¢35(36¢3c¢)

g g
+G0a(0°p0c0) Oy — Gggabacsoa(;(adsoadso)

. E
—4b3T,, = _4bgTC§g‘“”> — 2(0a0) — 9qp0°0c) (¢ — e + Gggabaawab@

1
+2G(8a0) — gabaCaC)Zad(adSOASp)

is conserved and traceless (!) thanks to diffeomorphism invariance

T.., component (in two dimensions) Kawai, Nakayama (1993) at G=0

—4b%Tzz = (8¢)? — 2000 Ao — 20%(p — e Ap) — Ge(8p)? Ay
+4Ge0p0( e P0pdp) — 4Ged? (e Y0pdp) + Ged(dpAy)

1 _
—I—G6582(890A90)



KPZ-DDK for the four-derivative Liouville action

One-loop operator products Ts,(z) e?(®) and Ty.(z)T%.(0)

Wwﬁw@mﬁ

a)

{}m&w%w

h [¢)] h)
i O
i) J k)
Conformal weight of e¥(0): 1 =4 —p2.

In central charge of ¢ nonlocal term revives: c(¥) = 6q + 14 6Gq



Salieri:

“I checked the harmony with algebra.
Then finally proficient in the science,
I risked the rare delights of creativity.”

A. Pushkin, Mozart and Salieri



One-loop propagator

PN ¢ R

a) b) c) d)

b — _1/ d?k { e?k?(k — p)?
B (2m)2 | (1 + ek [1 4+ e(k — p)?]
(ek?(k — p)? — M?)?
(/"C2 + M? 4 k) [(k — p)?2 + M? + e(k — p)?]
(ek?(k —p)* — 2M*=)?

2
+(k2‘|‘2M2—|—8k4)[(k_p)2_|_2M2_|_€(k_p)4]}|90(p)|
2
= blreg div—QpEW(pNQ

One-loop renormalization of b2 where A(sM?) ~ M2 = tadpole d)

L_1 _(1_ 2 ¢ 1
2= (6 4+ A+2G | di At 2G>—|—O(b)



One-loop renormalization of 7%,

One-loop renormalization of Tz(zl) {;iw

a) b) c) d)
1 1 1 £ 1

— = 2——A——G—G/dk2 “GA
6Jr 2 2 (1—|—5k2)+4

q 1
2 12
b b§

or multiplying by b2

2 2

q q > 1 1

(L) xbl=——Z G+ 00

b2 (bQ) b3 6 +O5)

This precisely confirms the above shift of the central charge by 6G

obtained by conformal field theory technique of DDK.

Tremendous cancellation due to diffeomorphism invariance proving
“intelligent” one ( ) loop to be exact: (like Duistermaat-Heckman?)

2
+ L 4146Gg=0, 1=g—b



5. Method of singular products
as pragmatic mixture
of CFT and QFT



Conformal transformation revisited

Generator of conformal transformation for nonquadratic e-m tensor
R ) J \ w.s. dz
) z/ I Op— | = / — T
§ Dy <£ 5o + & 905@) C: 27Ti£(Z) 22(2)

where D1 includes singularities of £(z) and C7 bounds D;.
Equivalence of two forms is proved by integrating the total derivative

_ 35S 5SS

)% O

and using the (quantum) equation of motion
05 w.s. O
Sp by

Actually, the form of 35 in the middle is primary.
It takes into account a tremendous cancellation of the diagrams, while
there are subtleties associated with singular products



List of singular products

T he simplest singular product

1
5 [ 4226(2) (0"(2)0(0)) 8 (2) = (~1)"~
arises already in a free CFT by the formulas

52 (2) = 5i7 1

T2 AL

2
(n+1)

1 =1
(n + 1)!8 o7

It can be alternatively derived introducing the regularization by e
1 1
k2(1 + ck2)’ (1 + ck?2)

c’% = (-1)"

582 (k) =

Ge(k) =

We then have

2 n (2) — (_1\N 2 n
81 [ d22£()0"G=()6P) (2) = (-1) A0

2 _En—l—l— Z(Q)Z:_n 2 n
8 [ a?2£(2)] — 40" T1AG- (D () = (1) L 139"E(0)




Computation of the central charge

Y.M. (2023)

Central charge c(P) of @ can be computed for normal-ordered T,, as

<5£Tzz(w)> ”’(w)

For quadratic part of T,

(31D @) = 515 [ 422" (2) + €(2)0P0(2) () + £ ()p ()
(2) (5 _ §"(w) __l " 2 1
6@z - ) = £ ( 4 6>—€ (w >(2b2 12)

Here 1/12 gives the usual quantum addition 1 to the central charge.
DDK formula for the central charge is reproduced for quadratic action.
Propagator is exact = this is why b2 cancels




Computation of the central charge (cont.)

Computation for quartic part is lengthy but doable with Mathematica

(@) =5 [ 4 (2005 ()080(2) + (40 — 2)=€"(2)0%Tp(2)
—685 (2)0%3p(2) - 46(2)0*p()ip() ) 62 (= — w)

B gl//(w) B B 2 1 B

Central charge of ¢ equals 1 at G = 0 as for quadratic action.
Computations is similar to one |loop but higher loops are taken into
account by b2, ¢ and « = why I call it “intelligent” one ( ) loop

Contribution from the G-term comes solely from the nonlocal part

(D) = ~2Ga [ 6= ([€"()006() + €/ ()PFp(2)]w))

<6 (2~ w) = _Ggg" ()

The vanishing of total central charge results in the modified second
DDK equation
6q §)

—16G——
b—l—-l-qbO



Universality of six and higher orders

To show the universality at order a?™ we use

1 59) _ 1
k2(1 + ek2)m’ (1 + ck2)m
m = 1 for the four-derivative action. I have derived

Ge(k) =

8 [ a2 €()[0"(~409) G- (181D (2) = (~1)"H{h0"(0)

F(n+E)Fr2m—k)r(m-4n)

F(n+ D (m)r(2m—+n)
It can be used for proving the universality of higher terms emerging
for the Polyakov string

H, =2

5.7 #2) > — §"(w) (a2 (0) _ 77(0O) \ _ ¢mr q° 1

<5§Tzz (W) 5 b2 +H2,m H3,m § (w) 2[92+12
1

(19w = S (onf) +onl) +onfl) —angh) =o

<S§T§§”6)(w)> = & (w) (—%Héﬁ% ~HP) 4308 - gHéz,n)%) —0



Heuristic understanding of universality

For general action (F(z) = (1 4+ z)/8nb3 for four-derivative)

1

1 ~ ~
ggen :__/ GoAF(—ce %$A)p, F(0) = —
el = =5 [ VaeAF(-ce?R)p.  F(0) =g os

propagator: k2F(eck?) and triple vertex: ek*F'(ck?).

One-loop renormalization e = e*¥ (wavy lines represent )

IO I

) — e d%k ek*F'(ek?) 1
— 2 P 2n2k2F (k]2 8xF(0)

independently on the choice of F' like anomalies in QFT

ePp = e¥bhp




Universality of nonlocal terms?

Nonlocal term comes from averaging EMT of the Nambu-Goto string
over XH* due to interaction A\*?0X -0X. Emerging T,,: X* = solid line

o O oz o

a)

1
(w — wp)?

b) A (w)

d/dzw[c?QGo(w — wp)]PA*? (w) = d/d2w

1 1
— 483 / 42w A (w) = d 3N (wp)
(w — wo) 0

C) — d/d2w1d2w2 82G0(w1 — wo)azGo(wQ — wo)aéGo(wl — wQ)
_ 1 _
X A% (w1)dN7 (wo) = d835)\zz(wo)5>\zz(wo)
d), e) etc. do not contribute at one-loop order

(81D = 2—52821 [ dz¢()[o AZZ<z>so<o>>+2< AZZ(z)AZZ<o>>]5<2><z>

e (1) (2) " - S e
= OB +2H3Z] = O +2 x ] = ,¢"(0)



6. Relation to minimal models



Exact solution for four-derivative action

Solution to two modified DDK equations

13—d—6G+ \/(d— dy)(d—d-)
12

h 2 =

q 1+ b2
dy = 13-6G+12V/14+G
where d = 26 — 6/b3 to comply with the Liouville action.

KPZ barriers are shifted to d+ which depend on G € [-1,0].
For G = —1/3 (the Nambu-Goto string) == d_ = 15—-4v6~5.2 > 4

T he string susceptibility equals

25 —d—6G + /(d—dy)(d—d_)
vstr=(h—1)b%+2=(h—1) \{2 T 42

It is real for d < d_— with d— > 1 increasing from 1 at G =0 to 19
at G = —1 for O > G > —1 required for stability as it follows
from the identity (modulo boundary terms)

/ e ¥ {(859@)2 — G@go&o@ggo] = / e ¥ [(1 + Q) (88p)? — GVIpYV Iy




BPZ null-vectors and Kac’s spectrum

Like in usual Liouville theory the operators

1—n 1—m
2 T 2b2

are the BPZ null-vectors for integer n and m obeying

Va — eaw, o —

(Lgl + sz—2> e ¥/ =0, (Lgl + b_QL—2> eV ¥/2 =0,
T heir conformal weights
Ao = a+ (o — a?)b?

coincide with Kac's spectrum

c—1
24

+ (m —n)

24 24

2
1—c 25 — ¢
Am,n(C) — )

1
—|—4<(m—|—n)

for

[25 —d—6G 4+ /(d—dy)(d—d)
2(1+ G)

c=26—-d+ G =14+6(b+b1)°



Minimal models from four-derivative action

To describe we choose like in usual Liouville theory
2
_ )2 (1 _d— 69" )q
c= 25+ 6<p 2) — G = P4
pq 6(q + p)

with coprime q > p

If G = 0O this would imply

pq
for central charge of matter but now d is a free parameter obeying

1

N2
NG
pq
Contrary to the Liouville theory now Kac's ¢ # c¥) =26 —d

<d<19-6 ~— 0>2G=>-1

QI

Remarkably, G = —1/3 is associated ind =4 withp=3, g=p+1 =4
unitary minimal model like critical Ising model on a random lattice



Minimal models from four-derivative action (cont.)

From the above formula for b2

4 perturbative branch

p 2= 7 55 _ 4 for d > 25— 6
-1+ ( )P the other branch p

\ 6(q + p)

Perturbative branch is as in the usual Liouville theory, but the second

2
branch is no longer p <+ ¢ with it. It is b2 = p/q for d =1 — 6—(p;g)

(p+ q)?
2

There are no obstacles against d =4 for ¢ = p+ 1 (unitary case)!

6
d_|_:d_=19 for d=dc =13 — —
p

For 1 <d < dc (dc is always >10) we have d < d_ and ~st, is REAL.

The perturbative branch is as in the usual Liouville theory but the
domain of applicability is now broader which may have applications
of the four-derivative Liouville action in Statistical Mechanics a Ia
Kogan-Mudry-Tsvelik (1996)



/7. Why ione loop?



Operatorial central charge otherwise
Y.M. (2022)

Generator of conformal transformation

e I Y T
5e = /Cl 2—7ﬂ§(z)Tzz(z) = 7T/Dl §0T, = /Dl <q§ dp +€8¢590>

with the commutator (where ¢ = &n/ — ¢/n as it should)
58¢ — 8o X ) = (8,X d? | d?
<(n§ gn)> <C>+D1 ZDz W

2
X <[Q£’(z) + £(2)0¢(2)][gn' (w) + n(w)dp(w)] 5@(5)5i(w)X>

= (3X) + 5 f, 51" = "X

DDK is reproduced for quadratic action S

Still usual central charge ¢ for higher-derivative action with G = 0 but
field-dependent for G # 0. Usual Virasoro algebra at one loop with
2

6
) = =7 + 146G+ 0(13)

Where is SL(2, R) Kac-Moody algebra at higher loops?



Conclusion

e “Massive” CFTs exist and solved by (almost) usual CFT technique
except for nonlocality in improved EMT

e Nambu-Goto and Polyakov strings are told apart by higher-derivative
terms which revive quantumly like anomalies in QFT

e Emergence of the four-derivative Liouville action alludes to (4,3)
minimal model like critical on a random lattice

e Any suggestions for gravity like action?
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