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• Main goal: understand basic mechanism of confiniment

• We study toy model: ’t Hooft’s model or Nc = ∞ QCD2

L =
Nc

4g2
tr FµνF

µν +

Nf
∑

k=1

Ψk(iγ
µDµ −mk)Ψk.

• At Nc = ∞ the Bethe Salpeter equation is exact

[

α1
x

+
α2

1− x

]

φ(x)−
1
 

0

dy
φ(y)

(x− y)2
= 2π2λ φ(x),

αi =
πm2

i

g2
− 1, M2

n = 2πg2λn.

• Local goal: analytic properties of λn(α1, α2) at complex αk?
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• Chiral limitmk → 0 corresponds to critical point (Gepner 1988, Affleck

1989):

NcWZW[U(Nf)]

• It is interesting to study the vicinity of this fixed point: Hamiltonian

truncation method is very efficient (Fitzpatrick et al)

• Other fixed points? Requires analytic properties of λn(α1, α2).

• Fateev, Lukyanov, Zamolodchikov 2009: α1 = α2 = 0

• This talk: α1 = α2 = α.
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• Fourier transform

φ(x) =

∞̂

−∞

dν

2π

(

x

1− x

)
iν
2
Ψ(ν), Ψ(ν) =

1̂

0

dx

2x(1− x)

(

x

1− x

)−iν
2
φ(x).

The Fourier form of ’t Hooft’s equation (α1 = α2 = α)

(

2α

π
+ ν coth

πν

2

)

Ψ(ν)− λ

∞̂

−∞
dν′

π(ν′ − ν)

2 sinh π(ν′−ν)
2

Ψ(ν′) = 0.

In this form it is amenable for numeric solution.

• Ψ(ν) is a meromorphic function of ν with simple poles at

iν∗k +2iN, −iν∗k − 2iN, N ≥ 0,

where ±iν∗k are roots of the equation (Re ν∗k > 0 for Reα > −1)

2α

π
+ ν coth

πν

2
= 0.
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• If we define the new function Q(ν) by the following expression

Q(ν)
def
= cosh

πν

2

(

ν +
2α

π
tanh

πν

2

)

Ψ(ν),

we conclude that the Q-function has to satisfy the following properties

1. be analytic in the strip Im ν ∈ [−2,2];

2. grow slower than any exponential at |Re ν| → ∞

Q(ν) = O(eǫ|ν|), ∀ǫ > 0, |Re ν| → ∞;

3. obey the quantization conditions

Q(0) = Q(±2i) = 0.
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• Q(ν) satisfies finite difference equation (Baxter’s TQ equation)

Q(ν +2i) +Q(ν − 2i)− 2Q(ν) = − 2z

ν + αx
Q(ν),

z = 2πλ tanh

(

πν

2

)

and x =
2

π
tanh

(

πν

2

)

.

• Integrability of large Nc QCD2?

• We will derive the spectral sums

G
(1)
+

def
=

∞
∑

n=0

[

1

λ2n
− 1

n+1

]

and G
(1)
−

def
=

∞
∑

n=0

[

1

λ2n+1
− 1

n+1

]

,

G
(s)
+

def
=

∞
∑

n=0

1

λs2n
and G

(s)
−

def
=

∞
∑

n=0

1

λs2n+1

, s > 1,

and WKB expansion.
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• If we drop the quantization condition Q(0) = Q(±2i) = 0 then Ψ(ν|λ)
will satisfy the inhomogeneous integral equation

(

2α

π
+ ν coth

πν

2

)

Ψ(ν)− λ

∞
 

−∞
dν′

π(ν′ − ν)

2 sinh π(ν′−ν)
2

Ψ(ν′) = F(ν|λ),

F(ν|λ) =
q+(λ)ν + q−(λ)

sinh πν
2

,

where q±(λ) are linear combinations of Q(0) and Q(±2i).

• It can be shown that for given q±(λ) the solution of is unique.

• We can choose a basis of symmetric and antisymmetric functions

Ψ±(−ν|λ) = ±Ψ±(ν|λ),

corresponding to

F+(ν|λ) =
ν

sinh πν
2

and F−(ν|λ) =
1

sinh πν
2

.
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• At the spectral points one has to recover the homogeneous equation.

• Thus Ψ±(ν|λ) are meromorphic functions of λ

Ψ+(ν|λ) =
∞
∑

n=0

c2nΨ2n(ν)

λ− λ2n
, Ψ−(ν|λ) =

∞
∑

n=0

c2n+1Ψ2n+1(ν)

λ− λ2n+1
,

• Quantum Wronskian

W (ν|λ) def
= Q+(ν + i)Q−(ν − i)−Q+(ν − i)Q−(ν + i) = 2i.

• We have

Q+(i) ∼
∞
∏

n=0

(λ− λ2n+1)

(λ− λ2n)
and Q−(i) ∼

∞
∏

n=0

(λ− λ2n)

(λ− λ2n+1)
.
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• Spectral determinants

D+(λ)
def
=

∞
∏

n=0

(

1− λ

λ2n

)

e
λ

n+1,

D−(λ)
def
=

∞
∏

n=0

(

1− λ

λ2n+1

)

e
λ

n+1.

can be written in terms of the spectral sums as

D±(λ) = exp



−
∞
∑

s=1

s−1G
(s)
± λs



 .

• We propose the following relations

∂λ logD−(λ) + q(α) = 2i ∂ν logQ+(ν)

∣

∣

∣

∣

ν=i
,

∂λ logD+(λ) + q(α) = 2i

(

1− 2α

π2
λ−1

)

∂ν logQ−(ν)
∣

∣

∣

∣

ν=i
,

where q(α) = . . .
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We have to find a solution of

Q(ν +2i) +Q(ν − 2i)− 2Q(ν) = − 2z

ν + αx
Q(ν),

z = 2πλ tanh

(

πν

2

)

and x =
2

π
tanh

(

πν

2

)

.

analytic in the strip Imν ∈ [−2,2].

For small λ→ 0 there are two solutions (FLZ)

Ξ(ν|λ) = (ν + αx)
∞
∑

k=0

(

1 + i(ν+αx)
2

)

k

k!(k+1)!
(−iz)k,

Σ(ν|λ) = 1+
∞
∑

k=1

(

i(ν+αx)
2

)

k

k!(k − 1)!

(

ψ
(

k+
i(ν + αx)

2

)

− ψ(k)− ψ(k+1)

)

(−iz)k.

Both of them fail to satisfy the analytic requirements.
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We notice that Σ(ν|λ) solves TQ equation even if we replace

ψ

(

k+
i(ν + αx)

2

)

→ ψα

(

ν − 2i(k − 1)
)

, k = 1,2, . . .

where ψα
(

ν
)

is a function analytic in the strip Im ν ∈ [0,2) which obeys

the functional relation

ψα

(

ν +2i
)

= ψα

(

ν
)

+
2i

ν + αx
.

Such a function is unique up to a constant shift:

ψα

(

ν+i
)

= −γE−log 4+
1

2

∞−iǫ
ˆ

−∞−iǫ

1

t+ 2α
π tanh πt

2

(

tanh
πt

2
− tanh

π(t− ν)

2

)

dt.
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Then we define

M+(ν|λ) = e
iz
2Ξ(ν|λ),

M−(ν|λ) =
1

2

(

e
iz
2Σ(ν|λ) + e−

iz
2Σ(−ν|λ)

)

,

so that

M±(−ν|λ) = ∓M±(ν|λ).

But still we have poles at ν = ±i of growing order.

We look for solutions of TQ equation in the form

Q±(ν|λ) = A±(τ |λ)M±(ν|λ) +B±(τ |λ)zM∓(ν|λ),

τ =
π2

4
tanh2

(

πν

2

)

where A±(τ |λ) and B±(τ |λ) admit the expansion

A±(τ |λ) = 1+
∞
∑

s=1

a
(s)
± (τ)λs, B±(τ |λ) = −(1±1)

α

2π2
λ−1+

∞
∑

s=0

b
(s)
± (τ)λs,
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The functions a
(s)
± (τ) and b

(s)
± (τ) are polynomials in τ of degree s and

s+ 1 respectively. They are uniquely determined by the requirement of

absence of poles at ν = ±i. For example

a
(1)
+ (τ) = −8α

π2
τ, a

(2)
+ (τ) =



1−
24α

(

π2 − 7αζ(3)
)

π4
− 12α3u3(α)

π2



 τ − 80α2

π4
τ2,

b
(0)
+ (τ) =





1

4
−

2α
(

π2 − 7αζ(3)
)

π4
− α3u3(α)

π2



− 4α2

π4
τ

where

u2k−1(α)
def
=

∞̂

−∞

sinh2 t

t cosh2k−1 t
(

α sinh t+ t cosh t
)dt.
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Using the relations

∂λ logD−(λ) + q(α) = 2i ∂ν logQ+(ν)

∣

∣

∣

∣

ν=i
,

∂λ logD+(λ) + q(α) = 2i

(

1− 2α

π2
λ−1

)

∂ν logQ−(ν)
∣

∣

∣

∣

ν=i
,

we obtain

G
(1)
+ = log(8π)− 1− 7αζ(3)

π2
− α

2
(u1(α)− αu3(α)) ,

G
(1)
− = log(8π)− 3+

7αζ(3)

π2
− α

2
(u1(α) + αu3(α)) ,

G
(2)
+ = 7ζ(3) + 8α

[

1

3
− 7ζ(3)

π2

]

+
4α2

π2

[

−28ζ(3)

3
+

49ζ2(3)

π2
+

62ζ(5)

π2

]

+

+

[

−π
2

2
+ 4α+4α2 − 28α2ζ(3)

π2

]

αu3(α) + α4u23(α)− 4α3u5(α),

G
(2)
− = 2− 4α

3
+

4α2

π2

[

14

3
ζ(3)− 31

π2
ζ(5)

]

− 2α3u3(α) + 2α3u5(α),

etc. We have computed and verified numerically G
(s)
± for s ≤ 7.
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Ar large negative λ another hypergeometric series solve our TQ equation

S(ν) = (−λ)−
iν
2 S0(ν)

∞
∑

k=0

(

1+ i(ν+αx)
2

)

k

(

i(ν+αx)
2

)

k

k!
(iz)−k,

provided that S0(ν) satisfies the functional relation

S0(ν +2i) =
4π tanh

(

πν
2

)

ν + 2α
π tanh

(

πν
2

)S0(ν).

We take

S0(ν+i) = exp







i

4

∞̂

−∞
log





4π tanh
(

πt
2

)

t+ 2α
π tanh

(

πt
2

)





(

tanh
π(t− ν)

2
− tanh

πt

2

)

dt






,

which is analytic in the strip Im ν ∈ [−2,2] except one point ν = −2i

where it has a simple pole.
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It is impossible to meet the analyticity requirements because of poles at

ν = 0, ν = ±i and ν = ±2i of growing order.

We resolve this problem similar to the small λ case

Q±(ν|λ) = T(c−1|λ)R±(c|λ)S(ν)∓ T(−c−1|λ)R±(−c|λ)S(−ν),

where

c(ν) = iπ coth

(

πν

2

)

.

We look for the functions T(c−1|λ) and R±(c|λ) in the form of asymptotic

expansion at large λ

T(c−1|λ) = 1+
∞
∑

k=1

T (k)(c−1)λ−k R±(c|λ) = 1+
∞
∑

k=1

R
(k)
±
(

c| log(−λ)
)

λ−k,

where T (k)(c−1) and R
(k)
±
(

c| log(−λ)
)

are polynomials in their variables.
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We have found exact formula for T(y|λ)

T(y|λ) = exp

[

αf

(

α

π2λ

)

y

]

,

where

f(t) =

√
1− 2t− 1 + t(1 + log4)− 2t log(1 +

√
1− 2t)

t
.

While

R±(c|λ) = 1± (1 + α)c

4π4
λ−2 ± (1 + α)c (6c+6q1 ∓ (1 + α))

24π6
λ−3 + . . . ,

q1 = 3(1+ α)− 2 log(−λ)− 4is1(α).

Here

s1(α) = − i

2
(1 + log2π+ γE) +

iα

8
i1(α),

with

i2k−1(α)
def
=

∞
 

−∞

sinh 2t− 2t

t sinh2k−1 t
(

α sinh t+ t cosh t
)dt.

We have computed the coefficients R
(k)
±
(

c| log(−λ)
)

for k ≤ 8.
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We obtain the asymptotic expansion of the spectral determinants D±(λ)

D±(λ) = d±
(

8πe−2+γE
)λ

(−λ)λ−
1
8±

1
4 exp

(

F
(0)
± (L) + F

(1)
± (L)λ−1 + . . .

)

,

where F
(k)
± (L) are polynomials in L = log(−2πλ) + γE

F
(0)
± (L) = −αL

2

2π2
− (3π2 +16α log 2− 2α2i2(α))L

8π2
,

F
(1)
± (L) =

α2L

2π4
+
απ2 +4α2(log 16− 1)− 2α3i2(α)∓ π2(4 + 8α)

16π4
,

where

i2k(α)
def
=

∞̂

−∞

sinh t(sinh 2t− 2t)

t cosh2k t
(

α sinh t+ t cosh t
)dt,

and

d−
d+

=

√

2(1 + α)

π
.
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We have constructed the expansion of D±(λ) for λ → −∞. However,

the physical values of the meson masses belong to the sector of positive

values of λ. We conjecture that the correct analytic continuation is

D±(λ) =
1

2

(

D±(−e−iπλ) +D±(−e+iπλ)
)

.

We have

D±(λ) = 2d±
(

8πe−2+γE
)λ
λλ−

1
8±

1
4 exp





∞
∑

k=0

Ξ
(k)
± (l)λ−k



×

× cos





π

2



2λ− 1

4
± 1

2
+

∞
∑

k=0

Φ
(k)
± (l)λ−k







 ,

where the coefficients Ξ
(k)
± (l) and Φ

(k)
± (l) are polynomials in

l = log (2πλ) + γE.
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They are related to the polynomials F
(k)
± (L) in a simple way

Ξ
(k)
± (l)

def
=

1

2

(

F
(k)
± (l+ iπ) + F

(k)
± (l − iπ)

)

,

Φ
(k)
± (l)

def
=

i

π

(

F
(k)
± (l− iπ)− F

(k)
± (l+ iπ)

)

.

The polynomials Φ
(k)
± (l) are responsible for quantization conditions

2λ− 1

4
± 1

2
+Φ

(0)
± (l) +Φ

(1)
± (l)λ−1 + · · · = 2m+1, m = 0,1,2, . . .

We have computed Φ
(s)
± (l) for s ≤ 7. For example

Φ
(0)
± (l) = −3

4
− α(4 log 4− αi2(α))

2π2
− 2α

π2
l, Φ

(1)
± (l) =

α2

π4
, Φ

(2)
± (l) =

α3 ± π2(1 + α)

2π6
,

Φ
(3)
± (l) =

1

12π8

[

5α4 + π2(1 + α)2 ∓ 12π2(1 + α)

(

l− 1

2
− 3α

2
− α

4
i1(α)

)]

,

Φ
(4)
± (l) = −(1 + α)2

4π8
l+

7α5 + π2(1 + α)2(1 + 5α) + π2(1 + α)2αi1(α)

16π10
∓


−3(α+1)

2π8
l2+

+
(1+ α)(22α+3αi1(α) + 10)

4π8
l+

8π2(4 + 3α)− (1 + α)(8 + 24α(4 + 5α)− (20 + 44α+3αi1(α))αi1(α))

32π8



,
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Thus we derive the expansion

λn =
1

2
n+

α

π2
log ρ+

α2

π4
2 log ρ− 1

n

−

− 1

π4
1

n
2





2α3

π2
log2 ρ− 6α3

π2
log ρ+

3α3

π2
+ (−1)n(1 + α)



+

+
1

π6
1

n
3





8α4

3π2
log3 ρ− 16α4

π2
log2 ρ+

24α4

π2
log ρ− 29α4 + π2(1 + α)2

3π2
+

+(−1)n(1+α) (4(1 + α) log ρ− (2 + 8α+8 log2 + αi1(α)))



+O
(

log4 n

n
4

)

,

where

n = n+
3

4
− α2

2π2
i2(α), ρ = 4πeγE

(

n+
3

4
− α2

2π2
i2(α)

)

.

We derived WKB formula up to 1
n
6. Numerics shows that already at n = 1

the accuracy is quite high!
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What about analytic properties of λn(α)?

We remind that all the spectral sums are expressed in terms of

u2k−1(α) =

∞̂

−∞

sinh2 t

t cosh2k−1 t
(

α sinh t+ t cosh t
)dt.

The integrand in u2k−1(α) has poles at tk:

α sinh t+ t cosh t = 0.

For real α > −1 they are imaginary: 2k − 2 < Im tk < 2k for k = 1,2, . . .

However, for complex α, poles from the lower half-plane can penetrate

into the upper half-plane and hit some pole there. This gives rise to

singularities of u2k−1(α) at

αk = − cosh2 τk, 2τk = sinh[2τk].

At any of αk (for example α1 = −1) some mass has to vanish!
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Future plans:

• Proof of

∂λ logD−(λ) + q(α) = 2i ∂ν logQ+(ν)

∣

∣

∣

∣

ν=i
,

∂λ logD+(λ) + q(α) = 2i

(

1− 2α

π2
λ−1

)

∂ν logQ−(ν)
∣

∣

∣

∣

ν=i
.

• α1 6= α2: work in progress

• 1/Nc corrections: M2
k (α) ∼ (α− αk)

βk?
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Thank you
for your attention!
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