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e Main goal: understand basic mechanism of confiniment

e We study toy model: 't Hooft's model or N = oo QCD»

N, N
L= 492tr EuwFP + Y Wi (iv* Dy — my, ) Wy
k=1

e At N. = oo the Bethe Salpeter equation is exact

1
[% T 1012x] o= Z[ dy(wcbfyy))2 =2mA o),

7Tm-2

o = 927’ — 1, Mg = 27g°\n.

e Local goal: analytic properties of A\p(a1,as) at complex a7



Chiral limit m;, — 0 corresponds to critical point (Gepner 1988, Affleck
1989):

NeWZWI[U(Ny)]

It is interesting to study the vicinity of this fixed point: Hamiltonian
truncation method is very efficient (Fitzpatrick et al)

Other fixed points? Requires analytic properties of A\p(aq, as).

Fateev, Lukyanov, Zamolodchikov 2009: a1 = a> =0

This talk: a1 = as = a.



e Fourier transform

The Fourier form of 't Hooft's equation (a1 = asr = &)

00 -
(2_a + v coth ﬂ) W(v) — A / dv’ (v I,/> v (/) =0.
T 2 o > sinh X =v)

In this form it is amenable for numeric solution.

e W(v) is a meromorphic function of v with simple poles at
ivi +2iN, —ivf —2iN, N >0,
where +iv; are roots of the equation (Rev; > 0 for Rea > —1)

2
—a—l—ucoth%:o.
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e If we define the new function Q(v) by the following expression

2
Q) L osh %V <1/ + % tanh %V) W(v),
s

we conclude that the QQ-function has to satisfy the following properties
1. be analytic in the strip Imv € [-2, 2];

2. grow slower than any exponential at |Rev| — oo

Qv) = O(e€|y|), Ve >0, |Rev|— oo;

3. obey the quantization conditions

Q(0) = Q(£2:) = 0.



e Q(v) satisfies finite difference equation (Baxter's TQ equation)

Qlv+2)+ Qv —21) —2Q(v) = —

2z
v+ ax

Qv),

z = 2w Atanh (%V) and ngtanh (%V)

e Integrability of large N, QCD»57

e We will derive the spectral sums

s 1 1
Gil) der > [ - ] and
=0 lron n+1
0
1
G(S) det Y — and
n=0 "'2n

and WKB expansion.

7
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e If we drop the quantization condition Q(0) = Q(£2i) = 0 then W(v|\)
will satisfy the inhomogeneous integral equation

(2—0‘+ucoth %) W(v) — A ][ dv/

7

(v —v)

_ 7T(I//_I/)\IJ(V/) = F(v|M),
I 25th

g+ (MNv 4+ q-(N)
sinh %’/

F(v|\) =

Y

where ¢+ (\) are linear combinations of Q(0) and Q(£21).
e It can be shown that for given g+ () the solution of is unique.

e \We can choose a basis of symmetric and antisymmetric functions

Wi (—v[A) = Wi (v|A),

corresponding to

1
and F_(v|\) =

: iv% H Ty *
s.lnh7 smh7

F_|_(I/|>\) —




At the spectral points one has to recover the homogeneous equation.

Thus W4 (v|\) are meromorphic functions of A

0@

conWon (V) = Cop+1Vont1(v)
e = BT v = 3 e
n n=0 n

n=0

Quantum Wronskian

WD) E Qp(v+1DQ-(v — 1) — Qv — )Q—(v +14) = 2i

We have

A = (A= Aop41) N = (A=)
O+ nl;[o (A = A2p) and Q-0 nl;[o (A = Xont1)




e Spectral determinants

e A A
Dy E ] (1 _ —> enF 1,
n=0 A2n
> A A
- E ] (1 _ >en+1.

can be written in terms of the spectral sums as

Di()\) = exp {— > s_ngf)AS

s=1

e \We propose the following relations

dx10g D_(A) + q(a) = 2i 0y log Q4 (v)

)
V=1

2
Oxlog D (N\) + q(a) = 2i (1 — W—Z‘/\‘l) OvlogQ-(v)| |

where g(a) = ...



We have to find a solution of

Qv+ 2i) + Qv — 2i) —2Q(v) = —

7

zzQwAtanh(%) and z = gtanh(Z”)

analytic in the strip Imv € [-2, 2].
For small A — O there are two solutions (FLZ)

B B 0 (1_|_i(V+(XZC))
=(v|\) = (v + ax) go ATCEEN

0 ((V—I—aa:))
S(v]A) =1+ Z G 1)f

E(—iz)",

(w(k TG Z ) _ (k) -k + 1)) (—iz)".

Both of them fail to satisfy the analytic requirements.



We notice that X (v|\) solves TQ equation even if we replace

w(k—l—i(y_;(m)) s ha(v—2i(k— 1)), k=1,2,...

where wa(u) is a function analytic in the strip Imv € [0,2) which obeys
the functional relation

alv+20) = a(v) +

Such a function is unique up to a constant shift:

21

v+ ax

1

dt.
t + 2%‘tanh %t

tanh ™ _ tanh m(t—v)
2 2

$a(v+i) = —yg—log 4+% /

—O0—1€
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Then we define
My (v]A) = e3=(|3),
M@ =3 (FE@IN) + e EE (),
so that
Mi(—v|]A) = FMi(v|N).

But still we have poles at v = +7 of growing order.

We look for solutions of TQ equation in the form
Qr(v|N) = AL(t|N) ML (v|A) + BL(7|A\)2zM=x(v|)N),
2
T = 7T—’Eanh2 (W—V)
4 2

where A+ (7|\) and B4 (7|\) admit the expansion

Ax(rN) =143 aP (DN, B = (£ 550 3 b ()N
s=1 s=0
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The functions a§§>(7) and bg_f)(r) are polynomials in 7 of degree s and
s + 1 respectively. They are uniquely determined by the requirement of
absence of poles at v = +¢. For example

8a (2 240 (12 — Ta((3)) B 12a3u3(a)] __ 80a? 5

CLEI})(T) =7 ay () = [1 —

-
w4 2 w4

2
b(O) (r) = 1 2a (7T — 7C“C(3)) B a3uz(a) B 40427_
+ |4 w4 2 w4
where
i inh?2 ¢
def SN
upg—1(a) = dt.

/ t cosh2k—1 t(a sinh ¢ + ¢ cosh t)

— 00
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Using the relations

Oxlog D_(A) + q(a) = 2i 0y log Q4 (v)

)
V=1

0y log D_|_()\) + q(a) = 214 (1 — 72_(_—(;>\_1> Oy log Q_(v) K

V=1
we obtain

7ozC(3) . % (u1(a) — auz(a)),
7aC(3) B g (ui(a) + auz(a)),

M =log(8m) — 1 -

¢ = jog(87) — 3+

_I_

2

a2 2
¢P =7¢(3) + 80 E - <23>] L4 [_28< (3) , 49¢2(3) | 62((5)

3 w2
2 2

2

g ] auz(a) + a*u3(a) — 4aus(a),
Aoy 4?2

6P =222+ 20 [22(3) - 25¢(5)| - 20%u3(a) + 20%us(a),

etc. We have computed and verified numerically Ggf) for s < 7.
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Ar large negative A\ another hypergeometric series solve our TQ equation

+ i(utaw))k (i(utaw))k (iz>_k’

(1% 0 1
501 = (50 3 | .
k=0 '

provided that Sp(v) satisfies the functional relation
47 tanh (%)

v+ 22 tanh (%

So(v +2i) = )So(V)-

We take

T 47 tanh (T
So(v+1i) = exp Z/Iog( an (2)

4 t+273tanh(7gf)) (

which is analytic in the strip Imv € [-2,2] except one point v = —24
where it has a simple pole.
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It is impossible to meet the analyticity requirements because of poles at
v =0, v= 47 and v = £27 of growing order.

We resolve this problem similar to the small A\ case

Q+(WI\) = T(c "N R (IN)SW) F T(—c A Re(—c]A)S(—v),

where
iv%

c(v) = im coth (?) :

We look for the functions T'(¢~1|A) and R+(c|)\) in the form of asymptotic
expansion at large A\

T ) =14 Y 7®CEHA* Ri(y) =1+ > rY (c| Iog(—A))A‘k,
k=1 k=1

where T(*)(c~1) and RS_Lk) <c| Iog(—A)) are polynomials in their variables.
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We have found exact formula for T'(y|\)

T(y|A) = exp [af (%) y],

where
(1) = VvV1—-2t—14+t(1+log4)—2tlog(1l+ 1 —2t)
t .
While
Ri(cA\) =14 (1 —|-Oé)0>\ 2 (1 +a)c(6c+ 6491 F (1 —|-Oé)) 3,
A4 2476
g1 =3(1 4+ o) —2log(—A) — 4isq ().
Here
s1(a) = (1 +109 27 + ) + Z1(a).
with
def T sinh 2t — 2t
— dt.
F2k-1(e) Z[O tsinh2*~1¢(asinht + ¢ cosht)

We have computed the coefficients R(k) (c| Iog(—A)) for k < 8.
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We obtain the asymptotic expansion of the spectral determinants D1 ()\)
A 1,1
D+()) = dx (8me™2F78) " (—A)A5E3 exp(Ff)(L) + @At )

where F(k)(L) are polynomials in L = log(—27\) + vg

al? (3724 16alog?2 — 2a2is(a))L

(0) _
'Fi (L)____QWQ__ 872 7
(1) a?’L  an? 4 402(log16 — 1) — 2a3is(a) F e (4 + 8a)
F (L)—-———“+
24 1674
where
0.9
i (@) def / sinh t(sinh 2¢t — 2t) 7t
2k - )
t cosh?k t(a sinh ¢ + ¢ cosh t)
— OO0

and

/204 @)
i
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We have constructed the expansion of Di(\) for A — —oo. However,
the physical values of the meson masses belong to the sector of positive
values of \. We conjecture that the correct analytic continuation is

Di(N) = % (Di(—e_iﬂ)\) + Di(—€+iw>\)> :

We have

D4 () = 2d+ (87re_2+’YE)A A8 exp ( S ng)(l)A’“) X

k=0

Z 11 o y—k
><cos(2 KQA 4i2+k§o¢i (DX ]),

where the coefficients z;’%) and CD(ik)(l) are polynomials in

| =log (27A) +vE.
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They are related to the polynomials Fj(ck)(L) in a simple way
=M ) def; (F(k)(l +im) + PR — 7,77))

efZ

oM () L1 (Fg@(z —imy - M+ m)) |

The polynomials <|>£_Lk)(l) are responsible for quantization conditions

1

QA—Zi%+CDS_LO)(l)—|—<l>§cl)(l)>\_1—|—---:Qm—l—l, m=0,1,2,...

We have computed <l>§f)(l) for s < 7. For example

3 a(d4logd —ais(a)) 2« a? a3+ 72(14a)
cb(io)(l) - a4 52 2 - ﬁl’ q’g)(l) - vy be)(l) = 56 )
1 1 3
oD W) =, 5|50 + 721+ )2 F1202(1 + ) (z —o-2 %il(a))] |
@y - _A+o)? | 7a®+ 721+ a)?(1 +50) + 121 +a)?eis(e) | 3(a+1)o
Pr=""ge 16710 R

(1 + a)(22a 4+ 3aii(a) + 10) 871'2(4 4+ 3a) — (1 4+ a)(8+ 24a(4 + 5a) — (20 4+ 44a + 3aii(a))aii(a))

A8 3278
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T hus we derive the expansion

22|o -1
An -4v+——mgp+ 90
n
1 1 |2a3 6oz
1 1 [8a% 16a% 2404 29044—|—772 1l 4+ « 2
+ =3 2|093,0— log® p + log p — é ) +
7Oon> |37 w2 2 37

+(-1)"(14a) (4(1 + a)logp — (2 +8a +8log2 + aij(a)))

I
+O<Og“>,
‘(1
where

3 a? 3 a?
n=n+z—%ig(a), p = 4melE (n—l—z—%ig(a)> :

We derived WKB formula up to 1%6. Numerics shows that already at n =1
the accuracy is quite high!
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What about analytic properties of A\p(«)?

We remind that all the spectral sums are expressed in terms of

oo

() / sinh?2 ¢ »
upp—1(a) = :
tCOSth_1t<ozSinht—I—tCOSht)

— 00

The integrand in uy,_1(a) has poles at t.:

asinht 4+ tcosht = 0.

For real @« > —1 they are imaginary: 2k —2 <Imt, <2k for k=1,2,...

However, for complex «, poles from the lower half-plane can penetrate
into the upper half-plane and hit some pole there. This gives rise to
singularities of us_1(a) at

Ozk:—COShQTk, QTk:Siﬂh[QTk].

At any of 4 (for example a3 = —1) some mass has to vanish!
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Future plans:

e Proof of

Oxlog D_(A) + q(a) = 2i 0y log Q4 (v)

2
9y 109 D4 () + q(a) = 2i (1 _ W—g‘

® a1 #* oo, WOrk in progress

e 1/N. corrections: M?(a) ~ (o — ay,)Pk?

)
V=1

A_l) o, 1og Q_(v)

=1
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T hank you
for your attention!
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