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The star-triangle relation can be visualized as Yang-Baxter Eq.
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Fig. 1

where f (θ1, θ2, θ3) = (2π)2D a(α1) a(α2) a(α3), a(α) =
Γ(D/2−α)

πD/2 22α Γ(α)
and

❍❍❍❍❍✟✟✟✟✟
θx x ′ =

1

(x − x ′)2α(θ)
, α(θ) := D

2π (π − θ).

Fig. 2

E.S. Fradkin and M.Y. Palchik, Recent Developments in Conformal
Invariant Quantum Field Theory, Phys. Rept. 44 (1978) 249.
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The 4-dimensional φ4 field theory (and its multicomponent generalizations)
serves the Brout-Englert-Higgs mechanism and thus is an essential part of
the Standard Model of particle physics. It was shown by explicit evaluation
(in MS scheme) of the Gell-Mann-Low β-function in φ4

D=4 theory that
special Feynman diagrams – so-called zig-zag diagrams (in fact the residue
Resǫ = Z (M + 1) of the corresponding 4-point perturbative integral)
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x1 x2
β = 1

(x1−x2)2β
, xi , yi ∈ R

D , • =
∫

dDx , D = 4− 2ǫ ,

give 44%, 46% and 47% of numerical contributions, respectively, to the
3, 4 and 5 loop orders of β [D.J. Broadhurst and D. Kreimer (1995)].
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One can show that Z (M +1) ((M +1)-loop contribution to the β-function)
is also given by the integral for M-loop 2-point zig-zag diagrams (ZZD):

G2(x , y) =
x ❅
❅
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❅
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•
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❅
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•

•

•

•

and it has the general form for D = 4:

G2(x , y) =
π2M

(x − y)2
Z (M + 1) , (1)

where π2M is the normalization factor, x , y ∈ R
4 and Z (M + 1) is the

same constant that gives (M + 1)-loop order contribution to the
β-function in the φ4

D=4 theory.
History. The first Z (3) = 6ζ3 ∼ ⊳⊲ and Z (4) = 20ζ5 ∼ △▽△ in (1) were
analytically evaluated by [K.G.Chetyrkin, A.L.Kataev, F.V.Tkachov, 1980 ]1 and
[K.G.Chetyrkin, F.V.Tkachov, 1981], respectively. The constant Z (5) = 441

8 ζ7 of
the ZZD with 4 loops △▽△▽ was calculated by D.Kazakov in 1983. The 5 loop
ZZD △▽△▽△ contribution Z (6) = 168ζ9 to the β-function (in 6-loop order)
was found by D.Broadhurst in 1985. Here ζk :=

∑

n≥1 1/n
k .

1The ”two-loop fish diagram” was firstly evaluated in [E.De Rafael, J.L.Rosner, 1974].
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Then D.Broadhurst and D.Kreimer in 1995 evaluated Z (M + 1)

numerically up to (M + 1) = 10 loops, and based on these data they
formulated a remarkable conjecture that the constant Z (M + 1) is given by
the sign alternating sum

Z (M + 1) = 4CM

∞
∑

n=1

(−1)(n−1)(M+1)

n2M−1 =

=

{

4CM ζ2M−1 , for M = 2N + 1 ;

4CM (1− 22(1−M)) ζ2M−1 , for M = 2N ;
ζk =

∑

n>1

1
nk

,

(2)

where M is the number of loops in ZZDs and CM = (2M)!
(M+1)!M! is the

Catalan number. Finally, the very nontrivial proof of the Broadhurst-
Kreimer conjecture was found by [F.Brown and O.Schnetz in 2013,2015; based on

J.M.Drummond (2012)].
In this report, by using methods of D-dimensional CFT, the concise
integral presentations for 4-point and 2-point zig-zag Feynman graphs are
deduced. It gives a possibility to compute exactly a special class of 2- and
4-point Feynman diagrams (ZZDs for any M) in φ4

D theory. In particular we
find new rather simple proof of the Broadhurst-Kreimer conjecture.
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Operator formalism for massless diagrams.

Let {q̂µa , p̂
ν
b} (a, b = 1, ..., n) be generators of the D-dimensional

Heisenberg algebras Ha (a=1,...,n)

[q̂µa , q̂
ν
b ] = 0 = [p̂µa , p̂

ν
b ] , [q̂µa , p̂

ν
b ] = i δµν δab (µ, ν = 1, ...,D) .

We introduce states |xa〉 which diagonalize coordinates q̂
µ
a :

q̂µa |xa〉 = xµa |xa〉 .

These states form the basis in the representation space Va of subalgebra
Ha. We also introduce the dual states 〈xa| such that the orthogonality and
completeness conditions are valid

〈xa|x
′
a〉 = δD(xa − x ′a),

∫

dDxa |xa〉〈xa| = Ia ,

where Ia is the unit operator in Va and there are no summations over
indices a. So, we have the algebra H(n) = ⊕n

a=1Ha which acts in the space
V1 ⊗ · · · ⊗ Vn with basis vectors |x1〉 ⊗ · · · |xn〉.
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We use operators (q̂a)
2α = (

∑

µ
q̂
µ
a q̂

µ
a )

α and (p̂a)
2β = (

∑

µ
p̂
µ
a p̂

µ
a )

β with

non-integer α and β. These operators are understood as integral operators
defined via their integral kernels: 〈x | (q̂)−2α |y〉 = (x)−2α δD(x − y) and

〈x |
1

(p̂)2β
|y〉 =

∫

dDk

(2π)D
e ik(x−y)

(k)2β
=

a(β)

(x − y)2β
′
,

a(β) :=
2−2β

πD/2

Γ(β′)

Γ(β)
, β′ := D/2− β .

———————————————————————–
Consider the algebra H(2) = H1 +H2, which acts in V1 ⊗ V2 with basis
|x1, x2〉 := |x1〉 ⊗ |x2〉. To evaluate ZZDs in the operator approach we
introduce the main object – graph building operator:

Q̂
(β)
12 :=

1

a(β)
P12 (p̂1)

−2β (q̂12)
−2β ,

where (q̂12)
2 = (q̂µ1 − q̂

µ
2 )(q̂

µ
1 − q̂

µ
2 ) and P12 is the permutation operator

P12 q̂1 = q̂2 P12 , P12 p̂1 = p̂2 P12 , P12|x1, x2〉 = |x2, x1〉 , (P12)
2 = I .
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We depict the kernel 〈x1, x2|Q̂
(β)
12 |y1, y2〉 of the graph building operator

(GBO) Q̂
(β)
12 as

P12·

x1

β
β′

x2 y2

y1

♣♣♣♣♣♣♣♣♣♣

=
x2

β
β′

x1 y2

y1

♣♣♣♣♣♣♣♣♣♣

= 1
a(β) 〈x1, x2| P12 (p̂1)

−2β (q̂12)
−2β |y1, y2〉 =

= 1
(x2−y1)2β

′ (y1−y2)2β
δD(x1 − y2) ,

where
x1 x2♣♣♣♣♣♣♣♣♣ = δD(x1 − x2) , x1 x2

β
= (x1 − x2)

−2β .

Now we note that Q
(β)
12 is the GBO for the planar zig-zag Feynman graphs.

Example for Q̂2
12:

〈x1, x2| Q̂12 Q̂12 |y1, y2〉 =
︷ ︸︸ ︷
∫

dz1dz2|z1, z2〉〈z1, z2|

=
∫

dz1dz2 P12 ·

x1

x2 z2

z1

♣♣♣♣♣♣♣♣♣♣

· P12 ·

(flip upside down)
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y2

y1
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=

x1
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❅❅

y1

y2

To obtain 2-loop fish diagram we multiply this by (x1 − x2)−2β and integrate over x1 and y2.
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for even loops (2N − 2)

ββ ββ
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12 )2N |y1, y2〉(y1 − y2)

2β =

=
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. . . . . .

• • • • •

• • • • •
y1

y2

;

Here we remove the propagator 1/(y1 − y2)
2β .
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for odd loops (2N − 1)
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.

The vertices • denote the integration over RD .

We stress that these Feynman integrals represent the contribution to the
4-point correlation functions in bi-scalar D-dimensional ”fishnet” theory
[V.Kazakov a.o. (2016,2018)]. For clarity, we present the zig-zag diagrams
in the form of the spiral graphs having the cylindrical topology. We also
stress that integral kernels, shown in the pictures, in the case D = 4 and
β = 1, contribute to Green’s functions of the standard φ4

D=4 field theory.
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The next important statement is that Q
(β)
12 is also the graph building

operator for the integrals of the planar zig-zag 2-point Feynman graphs:
1. for even number of loops 2N

β ββ ββ
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β′

β′

β′ β′

β′
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(β)
12 )2N |y1, y2〉

(x1 − x2)2β
;

2. for odd number of loops (2N + 1)
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❅❅
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=
∫

dDx1d
Dy2

〈x1, x2|(Q̂
(β)
12 )2N+1|y1, y2〉

(x1 − x2)2β
.

Below we use these representations to evaluate exactly the corresponding
classes of 2-point and 4-point Feynman diagrams. For this we need to find

eigenvalues and complete set of eigenvectors for GBO Q̂
(β)
12 .

Remark. The elements Hβ := P12 Q̂
(β)
12 ≡ (p̂1)

−2β(q̂12)
−2β form a

commutative set of operators [Hα, Hβ ] = 0 (∀α, β).
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To find eigenvectors for the graph building operator Q
(β)
12 we consider the

standard 3-point correlation function (in D-dimensional CFT) of three fields O∆1 ,

O∆2 and Oµ1...µn

∆ , where O∆1 , O∆2 are scalar fields with conf. dimensions ∆1,

∆2, while Oµ1...µn

∆ – (symmetric, traceless and transverse) tensor field with conf.

dimension ∆. The conformally invariant expression of this correlation function (up

to a normalization) is unique and well known [V.K. Dobrev, G. Mack, V.B. Petkova,

S.G. Petrova, I.T. Todorov (1976,1977); E.S.Fradkin , M.Y.Palchik (1978);...]

©
��

❅❅

O∆1
(y1)

O∆2
(y2)

Oµ1...µn

∆ (y)

uµ1 ...uµn

= uµ1 ...uµn 〈O∆1 (y1) O∆2(y2) O
µ1...µn

∆ (y)〉 =

=

( (u,y−y1)
(y−y1)2

− (u,y−y2)
(y−y2)2

)n

(y1 − y2)2η(y − y1)2δ(y − y2)2ρ
,

where u ∈ C
D such that (u, u) = uµuµ = 0 and

η =
1

2
(∆1+∆2−∆+ n) , δ =

1

2
(∆1+∆−∆2− n) , ρ =

1

2
(∆2+∆−∆1− n) .

14 / 28



We need the special form of the 3-point function (conformal triangle) when
parameters ∆,∆1,∆2 are related to two numbers α ∈ C, β ∈ R:

∆1 =
D
2 , ∆2 =

D
2 − β , ∆ = D − 2α− β + n ,

so we have for conformal triangle:

〈y1, y2|Ψ
(n,u)
α,β (y)〉 :=

( (u,y−y1)
(y−y1)2

− (u,y−y2)
(y−y2)2

)n

(y1 − y2)2α(y − y1)2α
′(y − y2)2(α+β)′

.

Proposition 1. The wave function |Ψ
(n,u)
α,β (y)〉 = uµ1 · · · uµn |Ψµ1...µn

α,β (y)〉
(∀α, β ∈ C) is the eigenvector for the graph building operator

Q̂
(β)
12 |Ψ

(n,u)
α,β (y)〉 = τ(α, β, n) |Ψ

(n,u)
α,β (y)〉 ,

with the eigenvalue

τ(α, β, n) = (−1)n πD/2 Γ(β)Γ(α)Γ
(

(α+ β)′ + n
)

Γ(β′)Γ(α′ + n)Γ(α + β)
.

The analogous statement, for D = 4 and β = 1, was made by [N.Gromov,
V.Kazakov and G.Korchemsky (2018)].
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Note that with respect to the standard scalar product in V1 ⊗ V2 the

operator Q̂
(β)
12 = 1

a(β) P12 (p̂1)
−2β (q̂12)

−2β (for β ∈ R) is Hermitian up to

the equivalence transformation:

(Q̂
(β)
12 )† = 1

a(β) (q̂12)
−2β (p̂1)

−2β P12 = U Q̂
(β)
12 U−1 ,

U := P12 (q̂12)
−2β = (q̂12)

−2β P12 .

Thus, we modify the scalar product in V1 ⊗ V2

〈Ψ|Φ〉 := 〈Ψ|U |Φ〉 =

∫

d4x1d
4x2

Ψ∗(x2 , x1)Φ(x1 , x2)

(x1 − x2)2β
,

where β ≡ D −∆1 −∆2 and with respect to this new scalar product the

operator Q̂
(β)
12 is Hermitian. Here we introduced the special conjugation

〈Ψ| := 〈Ψ|U = 〈Ψ| (q̂12)
−2β P12 ,

and operator U plays the role of the metric in V1 ⊗ V2.
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Complex parameter α should be also partially fixed.
Indeed, we define conformal dilatation operator

D̂ =
i

2

2
∑

a=1

(q̂ap̂a + p̂aq̂a) +
1

2
(yµ ∂yµ + ∂yµ yµ)− β,

such that [Q̂
(β)
12 , D̂] = 0 and it is diagonalized simultaneously with Q̂

(β)
12 :

D̂ |Ψ
(n,u)
α,β (y)〉 =

(

2α+ β −
1

2
D − n

)

|Ψ
(n,u)
α,β (y)〉 .

For β ∈ R, we obtain D̂† = −U D̂U−1. Thus, operator D̂ is anti-Hermitian
with respect to the same new scalar product 〈Ψ|U |Φ〉, and it gives the
condition for eigenvalues of D̂:

2(α∗ + α) = 2n + D − 2β ⇒ α =
1

2
(n+ D/2− β)− iν , ν ∈ R .

So, we see that the eigenvalue problem for Q̂
(β)
12 is characterized by two

real numbers β, ν ∈ R and we have ∆ = D
2 + 2iν.
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Remarkable fact: under these conditions, the GBO eigenvalue is real

τ(α, β, n) = (−1)n
πD/2Γ(β) Γ(D4 + n

2 − β
2 + iν) Γ(D4 + n

2 − β
2 − iν)

Γ(β′) Γ(D4 + n
2 + β

2 + iν) Γ(D4 + n
2 + β

2 − iν)
∈ R.

In view of conditions on α, β, we introduce concise notation

|Ψ
(n,u)
ν,β,y〉 := |Ψ

(n,u)
α,β (y)〉 = uµ1 · · · uµn |Ψµ1...µn

α,β (y)〉,

Ψ
(n,u)
ν,β,y(x1 , x2) := 〈x1 , x2|Ψ

(n,u)
ν,β,y〉 .

Since the eigenvalue τ is real (it is invariant under the transformation

ν → −ν), two eigenvectors |Ψ
(n,u)
ν,β,x〉 and |Ψ

(m,v)
λ,β,y 〉, having different

eigenvalues τ (e.g. n 6= m and λ 6= ±ν), should be orthogonal to each
other with respect to the new scalar product. Indeed, we have the following
orthogonality condition for two conformal triangles (see, e.g., [V.K. Dobrev,

G. Mack, I.T.Todorov, M.C.Mintchev, V.B.Petkova (1976-1978); N. Gromov, V.

Kazakov, and G. Korchemsky (2019)])

〈Ψ
(m,v)
λ,β,y |Ψ

(n,u)
ν,β,x〉 =

∫

dDx1 d
Dx2 〈Ψ

(m,v)
λ,β,y |U|x1x2〉〈x1x2|Ψ

(n,u)
ν,β,x〉 =
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=

∫

dDx1 d
Dx2

(Ψ
(m,v)
λ,β,y (x2 , x1))

∗ Ψ
(n,u)
ν,β,x(x1 , x2)

(x1 − x2)2(D−∆1−∆2)
=

= δnmC1(n , ν) δnm δ(ν − λ) δD(x − y) (u, v)n+

+ C2(n , ν) δnm δ(ν + λ)

(

(u, v)− 2 (u,x−y)(v ,x−y)
(x−y)2

)n

(x − y)2(D/2+2iν)
, (3)

where (u, v) = uµvµ, β = D −∆1 −∆2 = ∆1 −∆2 and

C1(n , ν) =
(−1)n 21−n π3D/2+1 n! Γ (2iν) Γ (−2iν)

Γ
(

D
2
+ n

)

(

(

D
2
+ n − 1

)2
+ 4ν2

)

Γ
(

D
2
+ 2iν − 1

)

Γ
(

D
2
− 2iν − 1

)

(4)

We note that the coefficient C1 is independent on β and plays the
important role as the inverse of the Plancherel measure used in the
completeness condition (resolution of unity); see below. In contrast to this,
the coefficient C2 in (3) depends on β, but the explicit form for C2 will not
be important for us.
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C2(n , ν) = 2πD+1 n!

2n
Γ
(

D
4
− ∆1−∆2

2
+ n

2
− iν

)

Γ
(

D
4
− ∆1−∆2

2
+ n

2
+ iν

)

Γ
(

D
4
+ ∆1−∆2

2
+ n

2
− iν

)

Γ
(

D
4
+ ∆1−∆2

2
+ n

2
+ iν

) ·

Γ (2iν) Γ
(

D
2
+ 2iν − 1 + n

)

Γ
(

D
2
+ n − 2iν

)

Γ
(

D
2
+ 2iν − 1

)

Γ
(

D
2
+ n

) (5)

Completeness (or resolution of unity I ) for the basis of the eigenfunctions
|Ψµ1···µn

ν,β,x 〉 is written as [V.K. Dobrev, G. Mack, I.T.Todorov, M.C.Mintchev,

V.B.Petkova (1976-1978); N. Gromov, V. Kazakov, and G. Korchemsky (2019)]

I =

∞
∑

n=0

∫ ∞

0

dν

C1(n , ν)

∫

dDx |Ψµ1···µn

ν,β,x 〉〈Ψµ1···µn

ν,β,x | =

=
∞
∑

n=0

∫ ∞

0

dν

C1(n , ν)

∫

dDx |Ψµ1···µn

ν,β,x 〉〈Ψµ1···µn

ν,β,x |U .

This is main formula needed to evaluation of ZZDs.
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Substitution of this resolution of unity into expressions for zig-zag 4-point
Feynman graphs gives (here M is a number of loops)

G
(M)
4 (x1, x2; y1, y2) = 〈x1, x2|

(

Q̂
(β)
12

)M
|y1, y2〉(y1 − y2)

2β =

=
∞
∑

n=0

∞
∫

0

dν

C1(n , ν)

∫

d
D
x 〈x1, x2|

(

Q̂
(β)
12

)M
|Ψµ1···µn

ν,β,x 〉〈Ψµ1···µn

ν,β,x |U|y1, y2〉(y1 − y2)
2β =

=

∞
∑

n=0

∞
∫

0

dν

(

τ (α, β, n)
)M

C1(n , ν)

∫

d
D
x 〈x1, x2|Ψ

µ1···µn

ν,β,x 〉〈Ψµ1···µn

ν,β,x |y2, y1〉 , (6)

where the integral over x in the right hand side of (6) is evaluated in
terms of conformal blocks [F.A.Dolan, H.Osborn (2001,2004); H.Osborn, A.Petkou

(1994)] (in four-dimensional case, this integral was considered in detail by
[N. Gromov, V. Kazakov, and G. Korchemsky (2019)]).

Further we use the expression for 2-point zig-zag functions G
(M)
2 (x2, y1)

G
(M)
2 (x2, y1) =

∫

dDx1d
Dy2

〈x1, x2|(Q̂
(β)
12 )M |y1, y2〉

(x1 − x2)2β
=
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and make the same procedure as for 4-point ZZ functions: G
(M)
2 (x2, y1) =

=
∞
∑

n=0

∞
∫

0

dν

C1(n , ν)

∫

d
D
x1d

D
y2 d

D
x
〈x1, x2|(Q̂

(β)
12 )

M

|Ψµ1···µn

ν,β,x 〉〈Ψµ1···µn

ν,β,x |U|y1, y2〉

(x1 − x2)2β
=

=

∞
∑

n=0

∞
∫

0

dν
(τ (α, β, n))M

C1(n , ν)

∫

d(x1, y2, x)
〈x1, x2|Ψ

µ1···µn

ν,β,x 〉〈Ψµ1···µn

ν,β,x |y2, y1〉

(x1 − x2)2β(y1 − y2)2β
=

=
1

(x2 − y1)2β
Γ(D/2− 1)

Γ(D − 2)

∞
∑

n=0

(−1)nΓ(n +D − 2)

2nΓ(n+ D/2− 1)

∞
∫

0

dν
τM+3(α, β, n)

C1(n , ν)
, (7)

where we apply the integral

∫

d
D
x1d

D
y2 d

D
x
〈x1, x2|Ψ

µ1···µn

ν,β,x 〉〈Ψµ1···µn

ν,β,x |y2, y1〉

(x1 − x2)2β(y1 − y2)2β
=

=
(−1)nΓ(n + D − 2)Γ(D/2− 1)

2nΓ(n + D/2− 1)Γ(D − 2)

τ 3(α, β, n)

(x2 − y1)2β
. (8)

The integral over ν in the right hand side of (7) for β = 1 and even D > 2
can be evaluated explicitly and gives the linear combination of ζ-values
with rational coefficients.
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To prove Broadhurst and Kreimer conjecture we need to consider the
special case β = 1, D = 4. In this case α = n+1

2 − iν and GBO eigenvalue
is simplified

τ (ν,n) := τ (α, β, n)|
D=4,β=1 =

(−1)n(2π)2

(1 + n)2 + 4ν2
.

The coefficient C1 in the definition of the Plancherel mesure for β = 1,
D = 4 is reduced to

C1(n, ν) =
π5

2n+3(1 + n) ν2
τ (ν,n) .

Finally we substitute τ(ν, n), C1(n, ν) into (7), integrate over ν and obtain

G2(x2, y1)|D=4,β=1
=

4π2M

(x2 − y1)2
CM

∞
∑

n=0

(−1)n(M+1) 1

(n + 1)2M−1
, (9)

where CM = 1
(M+1)

(2M
M

)

is a Catalan number. The relation (9) is

equivalent the Broadhurst and Kreimer formula for the M loop zig-zag
diagram (it corresponds to the (M + 1) loop contribution to the β-function
in φ4

D=4 theory).
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The generalization of the graph building operator is

Q
(ζ,κ,γ)
12 :=

1

a(κ)a(γ)
P12 q̂

−2ζ
12 p̂−2κ

1 p̂
−2γ
2 q̂

−2β
12 , ζ + β = κ+ γ .

We depict the integral kernel of the D-dimensional operator Q
(ζ,κ,γ)
12 as

follows ((κ′ := D/2− κ, γ′ := D/2− γ))

x1

βζ
κ′

γ′

x2 y2

y1
�

�
�

❅❅
❅❅

=

x2

βζ
κ ′

γ ′x1 y2

y1

= 〈x1, x2|Q
(ζ,κ,γ)
12 |y1, y2〉 =

= 1
a(κ)a(γ)

· 〈x1, x2| P12 q̂
−2ζ
12 p̂−2κ

1 p̂
−2γ
2 q̂

−2β
12 |y1, y2〉 =

=
1

(x1 − x2)2ζ(x2 − y1)2κ
′ (x1 − y2)2γ

′ (y1 − y2)2β
.

Thus, the operator Q
(ζ,κ,γ)
12 is the GBO for the ladder diagrams

β+ζ β+ζβ+ζ

κ′

γ′

γ′

κ′ γ′

κ′

x2

x1 y2

y1

•

•

•

•

•

•
. . . . . .

γ′

κ′

κ′

β+ζ

γ′

•

•
= (x1 − x2)

2ζ 〈x1, x2|(Q̂
(ζ,κ,γ)
12 )2N |y1, y2〉(y1 − y2)

2β ,
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Proposition 2. The eigenfunction for the operator Q
(ζ,κ,γ)
12 is given by 3-point

correlation function (conformal triangle)

〈y1, y2|Ψ
(n,u)
δ,ρ (y)〉 =

y1

α

ρ

δ

y2

y

❍❍❍

✟✟✟ ·
(

(u,y−y1)
(y−y1)2

− (u,y−y2)
(y−y2)2

)n

≡

y1

α

ρ, n

δ, n

y2

y

❍❍❍

✟✟✟
❨

✯

where we depict the nontrivial rank-n tensor numerator as arrows on the lines
(the rank is fixed by indices on the lines: ρ → (ρ, n), etc) and denote

2α = ∆1 +∆2 − (∆− n) , 2δ = ∆1 −∆2 + (∆− n) , 2ρ = ∆2 −∆1 + (∆− n) ,

i.e., conformal dimensions ∆,∆1,∆2 are arbitrary parameters in this case. Thus,

we have

Q
(ζ,κ,γ)
12 |Ψ

(n,u)
δ,ρ (y)〉 = τ̄(κ, γ; δ, α; n) |Ψ

(n,u)
δ,ρ (y)〉 .

where α+ ρ = κ′, α+ δ = γ′ and τ̄(κ, γ; δ, α; n) is an eigenvalue

τ̄(κ, γ; δ, α; n) = (−1)n · τ(δ′, κ, n) · τ(α, γ, n) ,

τ(α, β, n) = (−1)n πD/2Γ(β)Γ(α)Γ(α′−β+n)
Γ(β′)Γ(α′+n)Γ(α+β)
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Remark 1. We introduce new notation β + ζ = −2u and use expressions for
α, δ, ρ via conf. dimensions ∆1,2:

β − ζ = D −∆1 −∆2 , γ − ζ = D/2−∆1 , κ− ζ = D/2−∆2 .

In this case the general GBO is equal (up to a normalization factor) to the
R-operator [D. Chicherin, S. Derkachov, A. P. Isaev (2013)]

R∆1∆2(u) = a(κ)a(γ)Q
(ζ,κ,γ)
12 =

= P12 q̂
2(u+

D−∆1−∆2
2 )

12 p̂
2(u+

∆2−∆1
2 )

1 p̂
2(u+

∆1−∆2
2 )

2 q̂
2(u+

∆1+∆2−D

2 )
12

which is conformal invariant solution of the Yang-Baxter equation

R∆1∆2(u − v)R∆1∆3(u)R∆2∆3(v) = R∆2∆3(v)R∆1∆3(u)R∆1∆2(u − v) .

The operator R∆1∆2(u) intertwines two spaces V∆1 ⊗ V∆2 → V∆2 ⊗ V∆1 , where
V∆i

is the space of scalar conf. fields with dimensions ∆i . Let we have

V∆1 ⊗ V∆2 =
∑

∆,n V
(n)
∆ , where V

(n)
∆ – is the space of tensor fields. Thus,

eigenfunctions of R∆1∆2(u) = a(κ)a(γ)Q
(ζ,κ,γ)
12 should describe the fusion of two

scalar conformal fields with dimensions ∆1, ∆2 into the composite tensor field
with dimension ∆. Thus, conformal triangles are Clebsch-Gordan coefficients
which correspond this fusion.
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Remark 2. The special case (for D = 1 and ∆1 = ∆2 ≡
D
2 − ξ) of this

R-operator underlies Lipatov’s integrable model of the high-energy
asymptotics of multicolor QCD. Indeed, we have

P12R
(κ,ξ)
12 = q̂

2(u+ξ)
12 p̂2u1 p̂2u2 q̂

2(u−ξ)
12

u→0
→ 1 + u h

(ξ)
12 + ... ,

h
(ξ)
12 = 2 ln q212 + q̂

2ξ
12 ln(p̂

2
1 p̂22) q̂

−2ξ
12 ,

where h
(ξ)
12 is a local density of the Lipatov’s Hamiltonian.
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Conclusion.
In this report, we demonstrated:
1.) how the recent progress in the investigations of the multidimensional CFT can
be applied, e.g., in the analytical evaluations of massless Feynman diagrams.
2.) We believe that the approach described here gives the universal method of the
evaluation of contributions into the special class of correlation functions and
сritical exponents in various CFT.
3.) We also wonder if it is possible to apply our D-dimensional generalizations to
evaluation similar 4-points functions (with fermions) that arise in the generalized
”fishnet” model, in double scaling limit of γ-deformed N = 4 SYM theory.
4.) Very recent paper M. Kade, M. Staudacher, Supersymmetric brick wall
diagrams and the dynamical fishnet, arXiv:2408.05805 [hep-th]. Supersymmetric
generalizations of Basso-Dixon fishnet and brick wall diagrams.

S.E.Derkachov, A.P.Isaev, L.A.Shumilov, Conformal triangles and zig-zag
diagrams, Phys.Lett.B 830 (2022) 137150, 2201.12232 [hep-th];

Ladder and zig-zag Feynman diagrams, operator formalism and conformal
triangles, JHEP 06 (2023) 059, 2302.11238 [hep-th]
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