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Background

• Batalin-Fradkin-Vilkovisky (BFV) and Batalin-Vilkovisky (BV)
formalism.

• Alexandrov, Kontsevich, Schwartz, Zaboronsky (AKSZ) construction
of BV for Lagrangian topological models. Further develop-
ments Cattaneo, Felder, Roytenberg, Reshetikhin, Mnev, Ikeda, . . .

• BV on jet-bundles, local BRST cohomology Henneaux,

Barnich, Brandt, . . .

• Unfolded approach in higher spin gauge theories M.Vasiliev

• Geometric approach to PDEs Vinogradov, Tulczyjew, . . .

• FDA approach to SUGRA d’Auria, Fre, Castellani, Grassi . . .

• BRST first quantized (cf. L∞) approach to SFT and gauge
fields Zwiebach; Thorn, Bochicchio, Henneaux, Teitelboim, . . . . . .

• Fedosov quantization and its variations



AKSZ construction

(M, q, ω) - QP-manifold (target space) equipped with:

- Z-degree (ghost number) gh()

- homological v.f. q, q2 = 0, gh(q) = 1

- (odd)symplectic structure ω, gh(ω) = n− 1 such that

q2 = 0 , Lqω = 0

It follows: iqiqω = 0 and (locally) ∃H such that iqω+ dH = 0

(X , dX , ρ) (source space)

equipped with Z-degree (ghost number) gh()

homological v.f. dX and compatible measure ρ

Typically, X = T [1]X, dimX = n, coordinates xµ, θµ ≡ dxµ,

dX = θµ
∂

∂xµ
, µ = 0, . . . n− 1, and ρ = 1



Supermanifold of supermaps: σ̂ : T [1]X → M. ψA coordinates
on M. Fields: ψA(x, θ) := σ̂∗(ψA), σ̂ : T [1]X → M. BV action

SBV [σ̂] =
∫
T [1]X

(σ̂∗(χ)(dX) + σ̂∗(H)) , gh(SBV ) = 0

χ is the potential: ω = dχ. In components:

SBV =
∫
dnxdnθ

[
χA(ψ(x, θ))dXψ

A(x, θ) +H(ψ(x, θ))
]

BV symplectic structure:

ω̄ =
∫
T [1]X

σ̂∗(ωAB)δψ
A(x, θ) ∧ δψB(x, θ) , gh(ω̄) = −1

BV antibracket:(
F,G

)
=
∫
T [1]X

δRF

δψA(x, θ)
ωAB(ψ(x, θ))

δG

δψB(x, θ)
, gh

(
,
)
= 1

Master equation:(
SBV , SBV

)
= 0 modulo boundary terms



BRST differential s = (SBV , ·):

s =
∫
dnxdnθ(dXψ

A(x, θ) + qA(ψ(x, θ))
δ

δψA(x, θ)
.

Both q and dX naturally lift to the space of supermaps.

Physical fields: those of vanishing ghost degree

ψA(x, θ) =
0
ψA(x) +

1
ψAµ (x)θ

µ+ . . . gh(
k
ψAµ1...µk) = gh(ψA)− k

If gh(ψA) = k with k⩾0 then
k
ψAµ1...µk(x) is physical. Setting to

zero fields of nonzero degree (i.e. restricting to maps) gives the

classical action:

S[σ] =
∫
T [1]X

(σ∗(χ)(dX) + σ∗(H))



EL equations of motion:

ωAB(ψ(x, θ))(dXψ
A − qA) = 0 , ⇒ (dXψ

A(x, θ)− qA(ψ(x, θ))) = 0

provided ωAB is invertible.

More invariantly, if ψA(x, θ) = σ∗(ψA) the equations of motion

read as:

dXσ
∗(ψA) = σ∗(qψA) ⇔ dX ◦ σ∗ = σ∗ ◦Q

so that σ∗ is a morphism of respective complexes. Gauge trans-

formations correspond to trivial morphisms:

δϵσ
∗ = dX ◦ ϵ∗σ + ϵ∗σ ◦ q

ϵσ - gauge parameter. ϵ∗σ(fg) = (ϵ∗σf)σ
∗(g) + (−1)|f |σ∗(f)ϵ∗σ(g),

i.e. is a vector field along σ.



Example: CS theory, AKSZ, 1995

Target: M = g[1], q-CE differential, ω – invariant form on g
(degree 2 symplectic structure on g[1])
Source: X = T [1]X, dimX = 3, gh() – form degree, dX

SBV =
∫
X
Tr(AdA+

2

3
A ∧A ∧A) + BV completion

Ghosts and antifields arise as nonzero degree components of a
supermap:

σ̂∗(C) =
0
C(x) +Aµ(x)θ

µ+
1

2

2
Cµν(x)θ

µθν +
1

6

3
Cµνρ(x)θ

µθνθρ

Introducing C∗, A∗µ via
3
Cµνρ(x) = ϵµνρC∗ and

2
Cµν(x) = ϵµνρA∗ρ

the BV symplectic structure

ωBV =
∫
X
Tr(δAµ ∧ δA∗µ+ δC ∧ δC∗)



Example: 1d AKSZ sigma model

Target: BFV phase space M equipped with symplectic form

ω and BFV-BRST charge Ω = cαTα + . . . such that {Ω,Ω} =

0 and the Hamiltonian H = H0 + . . . satisfying {H,Ω} = 0.

(Generalized) AKSZ action M.G., Damgaard 1999

SBV =
∫
dtdθ(χAdXψ

A −Ω(ψ(t, θ)− θH(ψ(x, θ)))

is a BV extension (Fisch, Henneaux) of the Hamiltonian action:

S0 =
∫
dt(pq̇ −H0 − λαTα)

Lagrange multipliers λα arise as 1-forms associated to BFV ghost

variables: σ∗(cα) = λα(t)θ.



The relation between the BV antibracket and BFV Poisson bracket(
·, ·
)
BV

=
∫
dtdθ { · , · }

Explicit realization of the isomorphism of Barnich, Henneaux 1996



What we’ve learned:

– non-diffeo-invariant theories correspond to xa, θa-dependent
target structures. Suitable language of fiber bundles or parame-
terized systems.

– AKSZ unifies BV and BFV. For X = Σ × R1 taking T [1]Σ
as a source gives BFV-AKSZ sigma model. M.G. Barnich 2003;

M.G. 2010. Further developments: Cattaneo, Mnev, Reshetikhin 2012;

Bonechi, Zabzine 2012; . . . .

– More generally, induces (shifted) BV (BFV) on any source
manifold. Gives a natural framework to study gauge theories with
(asymptotic) boundaries M.G, Bekaert 2012; Mnev, Schiavina 2019, MG

Markov 2023, . . .



Towards generalized AKSZ

In general, AKSZ equations of motion

ωAB(ψ(x, θ))(dXψ
A(x, θ)− qA(ψ(x, θ))) , qA = qψA .

For ωAB invertible, these imply (generalized) zero-curvature and
hence the system is topological provided M is finite-dimensional.

What about general local gauge theories? Possible way out is
infinite-dimensional M involving all the curvatures. The idea
goes back to unfolded approach of M.Vasiliev . General formalism
and existense: Barnich, MG, 2010

An alternative (with M finite-dim.): take ω degenerate so that
AKSZ equations of motion kill only part of the curvature. The
first characteristic example is Cartan-Weyl form of Einstein grav-
ity:



Presymplectic AKSZ form of gravity

Target (g[1], q, ω), with g Poincare algebra and q its CE differen-
tial. Coordinates on g[1] in the standard basis ξa, ρab

qξa = ρac ξ
c , qρab = ρac ρ

cb+ λξaξb ,

Presymplectic structure: Alkalaev, M.G. 2013; MG 2016

ω = ϵabcdξ
adξbdρcd , ω = dχ

Lqω = 0 , dω = 0 ⇒ iqω+ dH =

AKSZ-like action:

S[σ] =
∫
T [1]X

σ∗(χ)(dX) + σ∗(H) =
∫
T [1]X

(dXγ
ab+ γacγ

cb)ϵabcde
ced

where ea = σ∗(ξa) and γab = σ∗(ρab). Familiar Cartan-Weyl
action for GR. Generalization for n > 4 and Λ ̸= 0 is obvious.
What about the remaining components of supermaps? Full-scale
BV formulation?



General axioms:

Def Pre Q-bundle π : (E,Q) → (X , q) Z-graded manifolds equipped

with degree 1 vector fields such that Q ◦ π∗ = π∗ ◦ q,
If Q2 = 0 and q2 = 0 one gets Z-graded version of Q-bundle

Kotov, Strobl 2007.

Def [MG 22, Dneprov, Gritzaenko, MG 23] Weak presymplectic gauge

PDE is a pre Q-bundle π : (E,Q) → (T [1]X, dX) equipped with

presymplectic structure ω, gh(ω) = dimX − 1 dω = 0

LQω ∈ I , iQiQω = 0 , iQLQω = 0

where I is generated by π∗(α) with α ∈
∧>0(T [1]X), i.e. by dx, dθ

Note that in general Q2 ̸= 0! Note that LQω ∈ I implies iQω +

dH ∈ I for some H ∈ C∞(E)



Weak presymplectic scalar field

E = T [1]X × F , fiber coordinates:

ϕ, ϕa , gh(ϕ) = gh(ϕa) = 0

Qxa = θa, Qθa = 0, Qϕ = θaηabϕ
b , Qϕa = θaV ′(ϕ)

Presymplectic form (cf. Kijowski, Tulczyjew 1979, Crnkovic, Witten,

1987,. . . presymplectic current):

ω = dχ , χ = (θa)n−1
a ϕadϕ , (θ)(n−1)

a = (∗θ)a
Note: in general LQω ̸= 0 and Q2 ̸= 0 but the axioms hold!

iQω+ dH ∈ I =⇒ H = −(θ)n(
1

2
ϕaϕ

a+ V (ϕ))

AKSZ-like (aka intrinsic) action: Schwinger, De Donder-Weyl

S[ϕ, ϕa] =
∫
X
(dx)n

(
ϕa(∂aϕ− 1

2
ϕa)− V (ϕ)

)



Presymplectic AKSZ form of YM:

E = T [1]X × F , fiber coordinates (g-valued):

C, gh(C) = 1 , F a|b , gh(F a|b) = 0

Qxa = θa, Qθa = 0, QC = −1

2
[C,C] +

1

2
F a|bθaθb, QF a|b = [F a|b, C]

Note Q2 ̸= 0, in general. Presymplectic structure satisfying

LQω ∈ I: Alkalaev, M.G. 2013

ω = dχ , χ = (θ)(n−2)
ab Tr

(
F a|bdC

)
AKSZ-like action (σ∗(C) = Aa(x)θa, σ∗(F a|b) = F a|b(x)):

S[σ] =
∫
dnxTr

(
(∂aAb − ∂bAa+ [Aa, Ab])F

a|b −
1

2
(F a|b)2

)



Features of weak presymplectic gPDEs:

- Almost as good as AKSZ but applies to general local gauge
theories

- Encodes a local gauge theory in terms of a finite-dim pre-Q
presymplectic manifold. Can be regarded as a minimal model of
BV (as we are going to see it arises as a minimal mode of the
L∞ algebra determined by the jet-space BV-BRST differential +
descent of the BV symplectic structure)

- Together with minimality condition seems to be an invariant
geometrical object underlying local gauge systems. Should be
unique modulo suitable equivalence.

- What about full-scale BV? Where does it come from? Exis-
tence?



Thm. Let (E,Q, T [1]X,ω) be a weak presymplectic gauge PDE.
Assume that presymplectic form ω̄ induced on ΓS(E) (supersec-
tions of E → T [1]X) is regular. Then, locally,

SBV (σ̂) =
∫
T [1]X

(σ̂∗(χ)(dX) + σ̂∗(H)) , ω = dχ

defines a local BV system on the symplectic quotient of ΓS(E).
The proof is given in terms of J∞S (E). Q,ω induces the usual
jet-bundle BV system on the symplectic quotient.

Physical explanation: Shifts along ker ω̄ are algebraic gauge transf.
for SBV . Gauge-fixing them gives BV action satisfying BV master-
equation modulo boundary terms. In particular, SBV can be used
in the path integral ∫

L̃
exp

i

ℏ
SBV

where L̃ also takes into account ker ω̄. No need to take the
symplectic quotient explicitly



Example: scalar

Recall: fiber coordinates ϕ, ϕa. Coordinates on ΓS(E):

σ̂∗(ϕ) =
0
ϕ(x) +

1
ϕa(x)θ

a+ . . .

σ̂∗(ϕa) =
0
ϕa(x) +

1
ϕab(x)θ

b+ . . .

Presymplectic structure ω = (θa)n−1
a dϕadϕ induces on supermaps:

ω̄ =
∫
X
dnx

(
δ
0
ϕ ∧ δ

1
ϕaa+ δ

0
ϕa ∧ δ

1
ϕa

)
All the fields are in the kernel except for:

φ =
0
ϕ, φ∗ =

1
ϕaa, φa =

0
ϕa, φ∗a =

1
ϕa

Correct set of fields and antifields for the 1st order form of
scalar! BV symplectic structure emerged from the presymplectic
current!



Example: YM

Recall: fiber coordinates C,F a|b. Coordinates on ΓS(E):

σ̂∗(C) =
0
C(x) +Aa(x)θ

a+
1

2

2
Cab(x)θ

aθb . . .

σ̂∗(F a|b) =
0
F a|b(x) +

1
F
a|b
c (x)θc+

1

2

2
F
a|b
cd (x)θ

cθd+ . . .

Presymplectic structure ω = θ
(2)
ab dF

abdC induces on supermaps:

ω̄ =
∫
X
Tr

(
δ
0
C ∧ δ

2
F
a|b
ab + δAa ∧ δ

1
F
a|b
b + δ

2
Cab ∧ δ

0
F a|b

)
All the fields are in the kernel except for:

C =
0
C, C∗ =

2
F
a|b
ab , Aa, Aa∗ =

1
F
a|b
b , F a|b, F ∗

ab =
2
Cab

SBV coincides with the standard BV action for YM in the first
order formalism.



Where do minimal models come from?

Descent completed BV: Q = dh + s:
Stora; Barnich Brandt Henneaux; Barnich MG;. . .

Descent completion of the BV symplectic structure: Cattaneo

Mnev Reshetikhin; Sharapov; Mnev Schiavina, MG; . . .

n
ω = (dx)nωAB(x, ψ

A)dvψ
Advψ

B ,

Ls
n
ω+ dh

n−1
ω = 0 , Ls

n−1
ω + dh

n−2
ω = 0 , . . .

Taking ω =
n
ω+

n−1
ω + . . .

0
ω one finds

LQω = 0 , iQiQω = 0

Taking minimal model and setting to zero variables from the
regular kernel of ω results in the presymplectic minimal model.
Derivation of (generalized) AKSZ!



Weak gauge PDEs

MG, Rudinsky 2024

Whats is the analog at the level of equations of motion?
Idea: keep the kernel distribution and forget about the presym-
plectic structure.
Def. Weak gPDE is a pre-Q-bundle (E,Q) → (T [1]X, dX) equipped
with a Q-invariant vertical distribution K such that Q2 ∈ K.
gPDE corresponds to K = 0

Thm. Let (E,Q, T [1]X,K) be a weak gPDE. Assume that pro-
longation K̄ of K is regular. Then, at least locally, J∞S (E)/K̄ is
a local BV system.
The proof is based on the observation: Q̄2 ∈ K̄ ⇒ Q̄2f = 0 for
any function f such that K̄f = 0.

Any weak presympectic gPDE gives weak gPDE by taking
K =

{
V ∈ Vectv(E) : iV ω ∈ I

}
and forgetting ω.



Example: self-dual YM

X = R4 with Eucledean metric and E → T [1]R4, with the fiber

being g[1], where g is a real Lie algebra. Local coordinates on E

are: xa, θa, CA. Useful convention C = CAtA. The Q-structure is

then defined as

Q(xa) = θa, Q(θa) = 0, Q(C) = −
1

2
[C,C]

Distribution K is generated by:

K
(1)ab
A =

(
θaθb+

1

2
ϵabcdθ

cθd
)

∂

∂CA
, K

(2)
aA = ϵabcdθ

bθcθd
∂

∂CA
,

Note: Q2 = 0 and LQK ⊂ K.

Minimal model (in the sense of weak gPDE) of seld-dual YM



Example: self-dual YM

Fields parameterizing the quotient J∞S (E)/K̄:

0
C, Aa ≡

1
C|a, F∗−

ab ≡
0
C|ab −

1

2
ϵabcd

0
C|cd.

The induced BRST differential s:

s(F∗−
ab ) = −(DaAb −DbAa)− − [F∗−

ab , C̄],

s(
0
C) = −

1

2
[
0
C,

0
C], s(Aa) = Da

0
C

where Da = Da+ [Aa, ·] is the covariant total derivative.

Gives standard BRST complex for self-dual YM.



Conclusions

• (Finite-dimensional) super-geometrical objects underlying lo-
cal gauge theories. It seems minimal models are canonical.

• Generalization and first principle derivation of the AKSZ con-
struction. Can be considered as an extension of AKSZ to
generic local theories.

• Determines a “canonical” first-order realization in terms of
the fields taking values in the minimal model. Makes manifest
underlying Cartan geometry. Covariant Hamiltonian formal-
ism. Classification?

• Further examples include conformal gravity (Denprov MG, 2022),
supergravity (MG Mamekin, to appear), bigravity Gritzaenko MG,

to appear .



• Tool to study geometry underlying a given gauge system.
Background fields and background independence can be in-
corporated in the approach (MG, Dneprov, to appear)

• In the case of variational systems unifies Lagrangian BV and
Hamiltonian BFV formalism, cf. BV/BFV approach of Cat-

taneo et all.

• Gives a geometrically-invariant approach to study boundary
values of gauge fields and asymptotic symmetries Bekaert,

M.G. 2012, MG, Markov 2023. In particular, Fefferman-Graham
construction (and tractor calculus) can be seen as a certain
gauge PDE. Bekaert, M.G. Skvortsov 2017

• Gives a criterion to characterize local theory in terms of its
infinite dimensional equation manifold. Possibly ineteresting
in the HS theory context.


