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Background

Batalin-Fradkin-Vilkovisky (BFV) and Batalin-Vilkovisky (BV)
formalism.

Alexandrov, Kontsevich, Schwartz, Zaboronsky (AKSZ) construction
of BV for Lagrangian topological models. Further develop-
ments Cattaneo, Felder, Roytenberg, Reshetikhin, Mnev, Ikeda, . ..

BV on jet-bundles, local BRST cohomology Henneaux,
Barnich, Brandt, . ..

Unfolded approach in higher spin gauge theories M. Vasiliev
Geometric approach to PDEs Vinogradov, Tulczyjew, . ..
FDA approach to SUGRA d’Auria, Fre, Castellani, Grassi . . .

BRST first quantized (cf. L) approach to SFT and gauge
fields Zwiebach; Thorn, Bochicchio, Henneaux, Teitelboim, ......

Fedosov quantization and its variations



AKSZ construction

(M, q,w) - QP-manifold (target space) equipped with:
- Z-degree (ghost number) gh()

- homological v.f. ¢, ¢2 =0, gh(q) =1

- (odd)symplectic structure w, gh(w) = n — 1 such that

¢ =0, Low=0
It follows: igiqw = 0 and (locally) 3H such that iqw +dH =0

(X,dx,p) (source space)

equipped with Z-degree (ghost number) gh()
homological v.f. dx and compatible measure p
Typically, X = T[1]X, dimX = n, coordinates z/, 604 = dz*,

dXZGH% , u=0,...n—1,and p=1
X



Supermanifold of supermaps: & : T[1]X — M. ¢4 coordinates
on M. Fields: ¥4(z,0) :=5*(¢v?), 6 : T[1]X — M. BV action

Spvlel = [ (G"Cdx) +5" (), gh(Spy) =0

x IS the potential: w = dx. In components:

Spv = [ ded"0 [xa(6(z,0))dx v (w,0) + H(w(z,0))]
BV symplectic structure:

5= | *(wap)dy?(x,0) ASYP(2,0),  gh(®@) = -1
BV antibracket:
_ §%F  AB
(F.G) = /T[l]X o ()
Master equation:

5G
spB(2,0)

an(,) =1

(SBV,SBV> =0 modulo boundary terms



BRST differential s = (Sgy,):

o — /dn d"0(dx v (x,0) + ¢ (v (z, 0)) w( o

Both g and dx naturally lift to the space of supermaps.

Physical fields: those of vanishing ghost degree
0 1 k
pA(@,0) = v (@) + @)+ ... gh(Ph, ) = gh(w?) —k

If gh(y?) = k with k>0 then %1 1, (x) is physical. Setting to
zero fields of nonzero degree (i.e. restricting to maps) gives the
classical action:

Slol = [ ("0 (dx) + 0" (30))



EL equations of motion:
wap(W(z,0))(dxv? —¢M) =0, = (dxv?(z,0) — ¢*(¥(z,0))) =0
provided w4p is invertible.
More invariantly, if ¥4(z,0) = o*(44) the equations of motion
read as:
* AN % A * %k
dxo (?) =0 (q¥”) & dxoo =0 0Q

so that o™ is a morphism of respective complexes. Gauge trans-
formations correspond to trivial morphisms:

dec* =dx o e, +¢€50q

es - gauge parameter. ¢5(fg) = (5 f)o*(g) + (Vo (Hes(9),
i.e. is a vector field along o.



Example: CS theory, AKSZ, 1995

Target: M = g[1], ¢-CE differential, w — invariant form on g
(degree 2 symplectic structure on g[1])
Source: X =T[1]X, dimX = 3, gh() — form degree, dx

2
Spy = /X Tr(AdA+ AN AN A)+ BV completion

Ghosts and antifields arise as nonzero degree components of a
supermap:

0] 2 3
5*(C) = C(z) + Au(2)0" + %CW(QJ)H“Q” 1 écw,p(x)eﬂe’/ep

3 2
Introducing C*, A** via Cpuvp(x) = €upC* and Cuu(z) = €uvpA*P
the BV symplectic structure

- /X Tr(§Au A SA™ 4 6C A 6C*)



Example: 1d AKSZ sigma model

Target: BFV phase space M equipped with symplectic form

w and BFV-BRST charge Q2 = ¢®Ty + ... such that {2,Q} =

O and the Hamiltonian H = Hg + ... satisfying {H,Q2} = 0.

(Generalized) AKSZ action M.G., Damgaard 1999
Spv = [ dtdoCxadxv™ = Qb (E,0) = 01 (4(2,0)))

iIs a BV extension (Fisch, Henneaux) of the Hamiltonian action:

So = [ dt(pq — Ho — XTa)

Lagrange multipliers \® arise as 1-forms associated to BFV ghost
variables: o*(c®) = \4(1)6.



The relation between the BV antibracket and BFV Poisson bracket

("')BV:/dth{" 8

Explicit realization of the isomorphism of Barnich, Henneaux 1996



What we've learned:

— non-diffeo-invariant theories correspond to z?%,60%-dependent
target structures. Suitable language of fiber bundles or parame-
terized systems.

— AKSZ unifies BV and BFV. For X = ¥ x R! taking T[1]Z
as a source gives BFV-AKSZ sigma model. M.G. Barnich 2003;
M.G. 2010. Further developments: Cattaneo, Mnev, Reshetikhin 2012;
Bonechi, Zabzine 2012; . . ..

— More generally, induces (shifted) BV (BFV) on any source
manifold. Gives a natural framework to study gauge theories with
(asymptotic) boundaries M.G, Bekaert 2012; Mnev, Schiavina 2019, MG
Markov 2023, . ..



Towards generalized AKSZ

In general, AKSZ equations of motion

wap(W(z, 0))(dxy?(z,0) — ¢*(W(z,0))),  ¢*=qp?.
For w4 p invertible, these imply (generalized) zero-curvature and
hence the system is topological provided M is finite-dimensional.

What about general local gauge theories? Possible way out is
infinite-dimensional M involving all the curvatures. The idea
goes back to unfolded approach of m.vasiliev. General formalism
and existense: Barnich, MG, 2010

An alternative (with M finite-dim.): take w degenerate so that
AKSZ equations of motion kill only part of the curvature. The
first characteristic example is Cartan-Weyl form of Einstein grav-

Ity



Presymplectic AKSZ form of gravity

Target (g[l],q,w), with g Poincare algebra and q its CE differen-
tial. Coordinates on g[1] in the standard basis £2, p@

g€ = p%,  ap™ = plep™ + A,
Presymplectic structure: Alkalaev, M.G. 2013; MG 2016
W = eabcdgadgdeCda w = dx
Lqw =0, dv=0 = iqw+dH =

AKSZ-like action:

Slol = [ 11, o700 +o ) = [ (@x7™ + 5%y eapeaee’

where €% = ¢*(¢2) and ~* = o*(p®). Familiar Cartan-Weyl
action for GR. Generalization for n > 4 and A #%= 0O is obvious.
What about the remaining components of supermaps? Full-scale
BV formulation?



General axioms:

Def Pre Q-bundle 7 : (FE,Q) — (X, q) Z-graded manifolds equipped
with degree 1 vector fields such that Q o™ = 7* o g,
If Q2 = 0 and ¢2 = 0 one gets Z-graded version of Q-bundle

Kotov, Strobl 2007 .

Def [MG 22, Dneprov, Gritzaenko, MG 23] Weak presymplectic gauge
PDE is a pre Q-bundle  : (E,Q) — (T[1]X,dx) equipped with
presymplectic structure w, gh(w) =dimX —1 dw =20

LQUJ S ZQZQM =0, iQLQw =0
where 7 is generated by 7*(a) with a € A”9(T[1]X), i.e. by dz,db

Note that in general Q2 # 0! Note that Low € Z implies igw +
dH € Z for some H € C°°(FE)



Weak presymplectic scalar field

E =T[1]X x F, fiber coordinates:
b, ¢, gh(¢) = gh(¢®) =0
Qr?=06% QI"=0, Q¢ =0%ue", Qo*=0"V'(¢)

Presymplectic form (cf. Kijowski, Tulczyjew 1979, Crnkovic, Witten,
1987,... presymplectic current):

w=dy, x=Vle%e, (O = (+0)a
Note: in general Low 7 0 and Q2 # 0 but the axioms hold!

. 1
igw+dH €T == H=—(0)"(5¢a0"+V(9))
AKSZ-like (aka intrinsic) action: Schwinger, De Donder-Weyl

$16,6%) = [ (d2)" (6°(2ud — 260) = V()



Presymplectic AKSZ form of YM:

E =T[1]X x F, fiber coordinates (g-valued):
c, gh(c)=1, F  gnF)=o0
Qx"=10° Q0°=0, QC=—2[C,Cl4 F,0, QFl=I[ri ]

Note Q2 %= 0, in general. Presymplectic structure satisfying
LQw cl: Alkalaev, M.G. 2013

w = dx, X = (9)(n 2y (F“‘de’)

AKSZ-like action (o*(C) = Aq(2)0%, o*(F0) = Fald(z)):

S[o] = / d"e T ((6aAb—8bAa—|— [Ag, A Folb — 2(Faib) )



Features of weak presymplectic gPDEs:

- Almost as good as AKSZ but applies to general local gauge
theories

- Encodes a local gauge theory in terms of a finite-dim pre-Q
presymplectic manifold. Can be regarded as a minimal model of
BV (as we are going to see it arises as a minimal mode of the
L~ algebra determined by the jet-space BV-BRST differential +
descent of the BV symplectic structure)

- Together with minimality condition seems to be an invariant
geometrical object underlying local gauge systems. Should be
unigue modulo suitable equivalence.

- What about full-scale BV? Where does it come from? EXis-
tence?



Thm. Let (F,Q,T[1]X,w) be a weak presymplectic gauge PDE.
Assume that presymplectic form & induced on I g(F) (supersec-
tions of £ — T'[1]X) is regular. Then, locally,
~\ ~ ok ~ ok —
Spv(@) = [ G +67(H)),  w=dx

defines a local BV system on the symplectic quotient of I'g(F).
The proof is given in terms of J°(F). Q,w induces the usual
jet-bundle BV system on the symplectic quotient.

Physical explanation: Shifts along ker w are algebraic gauge transf.
for Spy. Gauge-fixing them gives BV action satisfying BV master-
equation modulo boundary terms. In particular, Sgy can be used

where L also takes into account ker&. No need to take the
symplectic quotient explicitly



Example: scalar

Recall: fiber coordinates ¢, ¢*. Coordinates on Ng(FE):

0 1
" (¢) = ¢(x) + ¢4 (2)0% + . ..
0 1
5* (") = ¢"(x) + o (x)0° + ...
Presymplectic structure w = (9@)3—1d¢ad¢ induces on supermaps:
0 1 0 1
o = /X 4"z <5¢ A ST+ 667 A 5%)
All the fields are in the kernel except for:
O * 1CL a OCL * 1
p=9¢, ¢ =¢5 ¢"=0¢" 5= ¢a
Correct set of fields and antifields for the 1st order form of

scalar! BV symplectic structure emerged from the presymplectic
current!



Example: YM
Recall: fiber coordinates C, Felb. Coordinates on q(E):
. 0 1 b
o (C)=0C(x) —I—Aa(a:)ea—l—— 00° . ..
5 (FIv) = + P00 + Fa'b< )6°6% +
Presymplectic structure w = Q(Q)dFade induces on supermaps:

a|b a|b

2 0
o= / Tr (50 ANSFY + 8Aq ASFL” + 6C 4 A 5F“|b>

All the fields are in the kernel except for:

0 1 2
c=0C, c =P A, ar=pl g gy =G,

Spy coincides with the standard BV action for YM in the first
order formalism.



Where do minimal models come from?

Descent completed BV: Q = d,, + s:
Stora; Barnich Brandt Henneaux; Barnich MG;. ..

Descent completion of the BV symplectic structure: Cattaneo
Mnev Reshetikhin; Sharapov, Mnev Schiavina, MG, . ..

w = (dz)"wsp(z, v dvpAdyyp?

1 2

L +dy"o" =0, L@ +d"o" =0,
0

Taking w = w + ot + ...w one finds
Low =0, 1Qigw = 0
Taking minimal model and setting to zero variables from the

regular kernel of w results in the presymplectic minimal model.
Derivation of (generalized) AKSZ!



Weak gauge PDEs

MG, Rudinsky 2024
Whats is the analog at the level of equations of motion?
Idea: keep the kernel distribution and forget about the presym-
plectic structure.
Def. Weak gPDE is a pre-Q-bundle (E,Q) — (T[1]X,dx) equipped
with a @Q-invariant vertical distribution K such that Q2 € K.
gPDE corresponds to X =0

Thm. Let (F,Q,T[1]X,K) be a weak gPDE. Assume that pro-
longation K of K is regular. Then, at least locally, J3°(E)/K is
a local BV system.

The proof is based on the observation: Q2 € K = Q2f = 0 for
any function f such that £f = 0.

Any weak presympectic gPDE gives weak gPDE by taking
= {V € Vecty(F) :iyw € I} and forgetting w.



Example: self-dual YM

X = R* with Eucledean metric and E — T[1]R%, with the fiber
being g[1], where g is a real Lie algebra. Local coordinates on E
are: z%, 0% CA. Useful convention C = C4¢,. The Q-structure is
then defined as

QG =0 QMUY =0,  QC)=—[C,C]

Distribution IC is generated by:

KD — by L ab pepd) O (2) _ bgepd_ 9
<0a9 —l_ EEGJ CdQCQ )%—A, K — €abed 9 909 aCA,

Note: @2 =0 and Lgk C K.

Minimal model (in the sense of weak gPDE) of seld-dual YM



Example: self-dual YM
Fields parameterizing the quotient JP(F)/K:

0 ! .0 1 0,cd
C, Aa p— C|CL7 ab — C|ab - §€abcd0 .

The induced BRST differential s:
s(Fop ) = —(DaAp — DpAa)™ — [Fy , Cl,

0 10 0 0
S(C) — _E[Ca C]a S(Aa) — DGC

where Dy, = Dg + [Aq, ] is the covariant total derivative.

Gives standard BRST complex for self-dual YM.



Conclusions

(Finite-dimensional) super-geometrical objects underlying lo-
cal gauge theories. It seems minimal models are canonical.

Generalization and first principle derivation of the AKSZ con-
struction. Can be considered as an extension of AKSZ to
generic local theories.

Determines a ‘‘canonical” first-order realization in terms of
the fields taking values in the minimal model. Makes manifest
underlying Cartan geometry. Covariant Hamiltonian formal-
ism. Classification?

Further examples include conformal gravity (Denprov MG, 2022),
supergravity (MG Mamekin, to appear), bigravity Gritzaenko MG,
to appear.



Tool to study geometry underlying a given gauge system.
Background fields and background independence can be in-
corporated in the approach (MG, Dneprov, to appear)

In the case of variational systems unifies Lagrangian BV and
Hamiltonian BFV formalism, cf. BV/BFV approach of Cat-
taneo et all.

Gives a geometrically-invariant approach to study boundary
values of gauge fields and asymptotic symmetries Bekaert,
M.G. 2012, MG, Markov 2023. In particular, Fefferman-Graham
construction (and tractor calculus) can be seen as a certain
gauge PDE. Bekaert, M.G. Skvortsov 2017

Gives a criterion to characterize local theory in terms of its
infinite dimensional equation manifold. Possibly ineteresting
in the HS theory context.



