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Abstract
Heterotic string Gepner model in 4-dimensions Hysbrid of

1) the left-moving Superstring obtained from N = 1 CFT whose
additional 6 dimensions are compacti�ed on the product (M~k

) of
the N = 2 minimal models of SCFT with the total central charge 9,

and

2) the right-moving Bosonic string, whose additional 22 dimensions
are also compacti�ed on the product N = 2 SCFT Mk , and the
remaining 13 dimensions of which form the torus of E (8)× SO(10).

Such Heterotic string models have
1) N = 1 Space-time symmetry arising in its left-moving part
and
2) E (6) Gauge symmetry arising in its right-moving part.

These symmetries are necessary for phenomenological reasons.
They have been successfully used to derive Grand Uni�ed Theories
(GUTs).
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Abstract

In Gepner's pioneering work, the requirement that leads to a model
having the desired N = 1 Spacetime symmetry and E (6) Gauge
symmetry was the requirement that spacetime symmetry be
compatible with modular invariance.

In our work we show that the requirement for the simultaneous
ful�llment of mutual locality of the left-moving vertices of physical
states with the space-time symmetry generators

And

of right-moving vertices with generators of E (6)-gauge symmetry,
which arises after some special reduction

together with the requirement of mutual locality of complete
(left-right) vertices of physical states among themselves leads to
the same Gepner model.
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Plan of the construction

Based on these requirements, we construct the physical states of
the theory in three steps.

At the �rst step, in the left sector we �nd the generators of N = 1
space-time supersymmetry and the set of left-moving physical
states that are mutually local with them.

At the second step, in the right sector we �nd the generators of
E (6) symmetry and the set of right-moving physical states that are
mutually local with them.

At the third step, we �nd the products of the left- and right-moving
vertices of the states obtained in this way, which are mutually local
to each other.
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Left-moving sector, N=1 CFT
�It is a product of 4-dimensional N = 1 CFT for space-time sector
with cental charge 6 and N = 1 CFT for the compact sector realised
as a product N = 2 minimal models with the total cental charge 9.

�4-dimensional N = 1 CFT of space-time factor is a theory of 4
free bosons Xµ(z) and 4 Majorana fermions ψµ(z).

�N = 1 CFT for the compact sector realised as a product N = 2
minimal models with the total cental charge 9:

M~k
=

5∏
i=1

Mki , ci =
3ki

ki + 2
,
∑
i

ci = 9. (1)

�N = 2 superconformal minimal model contains the primary �elds

Φl ,q,s(z), l = 0, ..., k, l + q + s = 0mod 2, s = 0, 1, 2, 3,

∆ =
l(l + 2)− q2

4(k + 2)
+

s2

8
, Q =

q

k + 2
− s

2
.

(2)

�In NS sector, s = 0, 2 , in R sector s = 1, 3.
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Left-moving diagonal N = 1 Virasoro superalgebra.
�It is a product of 4-dimensional N = 1 CFT for space-time sector
with central charge 6

Tmat(z) = Tst(z) + Tint(z), Gmat(z) = Gst(z) + Gint(z),

Tst = −1

2
∂Xµ(z)∂Xµ(z)− 1

2
ψµ(z)∂ψµ(z),

Gst(z) = ∂Xµψµ(z),

Tint =
5∑

i=1

Ti (z), Gint(z) =
5∑

i=1

(G+
i + G−i )(z).

(3)

�The currents Ti (z), G±i (z) together with the U(1) current Ji (z)
form N = 2 Virasoro superalgebra of the minimal model Mi .

�The N = 1 Virasoro superalgebra action is correctly de�ned on the
product of only NS-representations or on the product of only
R-representations.
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BRST approach
�We use the BRST approach.

QBRST =

∮
dz(cTmat + γGmat +

1

2
(cTgh + γGgh)). (4)

�The ghost �elds and N = 1 Virasoro superalgebra.

β(z)γ(0) = −z−1 + ..., b(z)c(0) = z−1 + .... (5)

Tgh = −∂bc − 2b∂c − 1

2
∂βγ − 3

2
β∂γ,

Ggh = ∂βc +
3

2
β∂c − 2bγ.

(6)

�β − γ space of states is characterized by the vacuum Vq(z), which
can be realized as a free scalar �eld exponent:

Vq(z) = exp (qφ(z)), φ(z)φ(0) = − log(z) + ...,

β(z)Vq(0) ∼ O(zq), γ(z)Vq(0) ∼ O(z−q).
(7)
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Bosonization of ψµ and left-moving vertices

�The left-moving vertex can be written as

V
~l
~µL

= Pgh(β, γ, b, c)Pst(∂X
µ, ∂Ha)P(Ti , Ji ) exp [qφ+ ıλaHa]Φ

~l
~l ,~qL,~sL

(z),

~µL = (q, ~λ, ~qL, ~sL), ~qL = (q1L, ..., q
5

L), ~sL = (s1L , ..., s
5

L),

Q i
L :=

qiL
ki + 2

−
s iL
2

+ even, s iL = 0, 1, 2, 3, li + qiL + s iL = 0 mod 2.

(8)
Pgh,Pst ,Pint are the polynomials of the corresponding �elds and
theirs derivations.

�Here we bosonized fermions:

Ha(z)Hb(0) = −δab log (z) + ..., a, b = 1, 2.

1√
2

(±ψ0 + ψ1) = exp [±ıH1],
1√
2

(ψ2 ± ıψ3) = exp [±ıH2].
(9)
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The diagonal N = 1 Virasoro algebra
�Its action is well de�ned on the product of only NS - or only
R-representations. Using the de�nition

~µL · ~µ′L := −qq′ + ~λ · ~λ′ − 1

2

∑
i

(
qiq
′
i

ki + 2
−

si s
′
i

2
) (10)

the corresponding restrictions on the vertices that ensure the action
of the diagonal N = 1 can be rewritten in the form ~βj · ~µL ∈ Z,
where

~β1 := (1; 1, 0; 0, ..., 0; 0, ..., 0),

~β2 := (1; 0, 1; 0, ..., 0; 0, ..., 0),

~β3 := (1; 0, 0; 0, ..., 0; 2, 0, 0, 0, 0), ...,

~β7 := (1; 0, 0; 0, ..., 0; 0, 0, 0, 0, 2).

(11)

Important that the following equations also hold

~βj · ~β0 ∈ Z, j = 1, ..., 7.

~β0 := (
1

2
;
1

2
,
1

2
; 1, ..., 1; 1, ..., 1).

(12)
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Left-moving massless states.

�Among them we �nd massless spinors. In terms of Ha(z) bosons,
the vertices of massless spinors can be written as follows

S±ξ,p =
∑
~σ

ξ~σ(p) exp(−1

2
φ+ ı~σ · ~H ± ı

2

∑
i

kiφi√
ki (ki + 2)

)e(ıpµXµ)(z),

σa = ±1

2
,

2∑
a=1

σa = ±1, p2 = 0,

Ṡ±ξ,p =
∑
~̇σ

ξ~̇σ(p) exp(−1

2
φ(z) + ı~̇σ · ~H ± ı

2

∑
i

kiφi (z)√
ki (ki + 2)

)e(ıpµXµ)(z),

σ̇a = ±1

2
,

2∑
a=1

σ̇a = 0, p2 = 0.

(13)
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Super-Poincare algebra
�The �elds S±ξ,p are SO(1, 3) Weyl spinors of positive chirality,

while Ṡ±ξ,p are SO(1, 3) Weyl spinors of negative chirality.

�By setting p = 0 at these vertices, we obtain currents whose
integrals are supergenerators of space-time symmetry

S±σ = exp(−1

2
φ+ ıσaHa ±

ı

2

∑
i

kiφi√
ki (ki + 2)

)(z),

S±σ̇ = exp(−1

2
φ(z) + ıσ̇aHa ±

ı

2

∑
i

kiφi (z)√
ki (ki + 2)

)(z).

(14)

�The current S+
σ is mutually local with S−σ̇ and S−σ is mutually local

with S+
σ̇ . We can choose one of two pairs to obtain supercharges

that extend Poincaré algebra to N = 1 Super-Poincaré algebra

Q+
σ =

∮
dzS+

σ (z), Q−σ̇ =

∮
dzS−σ̇ (z),

[Q+
σ ,Q

−
σ̇ ]+ = (γµ)σ,σ̇P

µ = (γµ)σ,σ̇

∮
dzψµe−φ(z).

(15)
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Spacetime symmetry and GSO equation in the left sector.
�To obtain supersymmetry, we have to select from vertices

V
~l
~µL

= Pgh(β, γ, b, c)Pst(∂X
µ, ∂Ha) exp [qφ+ ıλaHa]Φ

~l
~l ,~qL,~sL

(z),

~µL = (q;~λ; ~qL;~sL), ~qL = (q1L, . . . , q
5

L), ~sL = (s1L , . . . , c
5

L)
(16)

those that are mutually local with S+
σ ,S

−
σ̇ .

�S+
σ , S

−
σ̇ are mutually local with such vertex if

1

2
q +

∑
a

σaλa +
1

2

5∑
i=1

(
qiL

ki + 2
− 1

2
s iL) ∈ Z. (17)

1

2
q +

∑
a

σaλa +
1

2

5∑
i=1

Q i
L ∈ Z. (18)

It turns out that it coincides with GSO condition, can be rewritten

~β0 · ~µL ∈ Z,

where ~β0 := (
1

2
;
1

2
,
1

2
; 1, ..., 1; 1, ..., 1).

(19)
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Left-moving massless supermultiplets
�We can also check the ful�llment of the important equality

~β0 · ~β0 = 1

.
�The following massless states and their superpartners are mutually
local with S+

σ ,S
−
σ̇ :

�Massless vector �eld

Vξ,p = ξµ(p)ψµexp(−φ) exp (ıpµX
µ)(z), ξµ(p)pµ = 0 (20)

�Massless scalar �eld

V c
~l ,p

= exp(−φ)Φc
~l

exp (ıpµX
µ(z)),

5∑
i=1

li
ki + 2

= 1,

V a
~l ,p

= exp(−φ(z))Φa
~l
(z) exp (ıpµX

µ(z)),
5∑

i=1

li
ki + 2

= 1,

(21)

where Φc
~l

(z), Φa
~l
(z) are chiral and anti-chiral primary states.
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�From GSO equation and the requirement of compatibility with
N = 1 Virasoro it follows that the total internal charges
QL :=

∑
i Q

i
L of the selected vertices are integers or half-integers.

�The weight lattice of the algebra SO(1, 3), as well as SO(2n), has
4 sublattices. That is weights ~λ belong to one of the four
conjugacy classes

(0) : (0, 0, 0, ..., 0) + any root;

(V ) : (1, 0, 0, ..., 0) + any root;

(S) : (
1

2
,
1

2
,
1

2
, ...,

1

2
) + any root;

(C ) : (−1

2
,
1

2
,
1

2
, ...,

1

2
) + any root.

(22)

�As a result of the requirement of compatibility of the action of the
N = 1 diganal Virasoro algebra and the ful�llment of the GSO
equation it follows that in NS sector the weights ~λ fall into classes
[0] and [V ] and in R sector the weights ~λ fall into [S ] and [C ].
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�Moreover, we get the following agreement between pictures q,
conjugacy classes ~λ and the sums of U(1) charges in the compact
sector and gives 4 classes of left vertices:

∑
i

Q i
L ∈ 2Z + 1⇒ q = −1,

∑
a

σaλa = 0 mod Z, (~λ ∈ [0]),

∑
i

Q i
L ∈ 2Z⇒ q = −1,

∑
a

σaλa =
1

2
mod Z, (~λ ∈ [V ]),

∑
i

Q i
L ∈ 2Z− 1

2
⇒ q = −1

2
,
∑
a

σaλa =
1

2
mod Z, (~λ ∈ [S ]),

∑
i

Q i
L ∈ 2Z +

1

2
⇒ q = −1

2
,
∑
a

σaλa = 0 mod Z.(~λ ∈ [C ]).

(23)
This completes the selection of the subspace of physical left
vertices, consistent with N=1 SUSY.
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Right-moving sector, N=0 CFT, ctot = 26
�X̄µ(z̄) are bosonic �elds in the 4-dimensional space-time with
c = 4.

�YI (z̄), I = 1, ..., 8 are bosonic �elds on the torus of the algebra
E (8) with c = 8.

�H̄α(z̄), α = 1, ..., 5 are bosonic �elds on the torus of the algebra
SO(10) with c = 5.

�M~k
is a product of Minimal models Mki with c =

∑
3ki
ki+2

=9.

�Right-moving energy-momentum tensor

T̄mat(z̄) =
1

2
(ηµν ∂̄X̄

µ∂̄X̄ ν + (∂̄YI )
2 + (∂̄H̄α)2) + T̄int(z̄). (24)

�We use the BRST approach introducing right-moving ghosts:

b̄(z̄)c̄(0) = z̄−1 + ... (25)

Q̄BRST =

∮
dz̄c̄(T̄mat +

1

2
T̄gh),

T̄gh = −∂̄b̄c̄ − 2b̄∂̄c̄ .

(26)
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Right-moving massless states and E (8)⊕ SO(10)⊕ U(1)4

�SO(1, 3) vector V µ(z̄) = ı∂̄X̄µ(z̄),

�Currents of E (8) algebra

V I (z̄) = ı∂̄Ȳ I (z̄), I = 1, ..., 8, V~k(z̄) = exp [ıkI Ȳ
I ](z̄), ~k2 = 2,

(27)

~k =

{
(±1,±1, 0, 0, 0, 0, 0, 0) + permutations,

(±1

2
, ...,±1

2
) + permutations, even number of + 1

2
.

(28)
�Currents of SO(10) algebra

V α(z̄) = ı∂̄H̄α(z̄), α = 1, ..., 5,

V~ρ(z̄) = exp [ıραH̄
α](z̄), ρα = ±1,

∑
(ρα)2 = 2,

(29)

~ρ = (±1,±1, 0, 0, 0) + permutations. (30)

�Currents of U(1)4 algebra

Ij(z̄) = ı

√
kj

kj + 2
∂̄φ̄j(z̄)−

kj
3(kj + 2)

Jint(z̄), j = 1, ..., 4. (31)
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Extension of SO(10) symmetry to E (6)
In the right-moving sector there aise also massless SO(10) spinors

Σ±ω (z̄) = exp [ıωαH̄
α] exp [± ı

2

∑
i

ki φ̄i√
ki (ki + 2)

],

ωα = ±1

2
,
∑

ωα =
1

2
mod 2Z,

Σ±ω̇ (z̄) = exp [ıω̇αH̄
α] exp [± ı

2

∑
i

ki φ̄i√
ki (ki + 2)

],

ω̇α = ±1

2
,
∑

ω̇α = −1

2
mod 2Z.

(32)

�Σ+
ω is mutually local with Σ−ω̇ . And Σ−ω is mutually local with Σ+

ω̇ .

�45 integrals of SO(10) currents together with 32 integrals of
spinor currents Σ+

ω (z̄), Σ−ω̇ and 1 integral U(1) current

J̄int =
∑
i

√
ki

ki + 2
∂̄φ̄i (z̄) (33)

form the adjoint (78) representation of the algebra E (6). 18 / 31



E (6) algebra.
�One can rewrite the E6 currents in terms of simple roots of E6

~αi = e1 − e2, ..., ~α4 = e4 − e5, ~α5 = e4 + e5,

~α6 = −1

2
(e1 + ...+ e5) +

√
3

2
e6,

(34)

where ei are the orthonormal basic vectors in R6.
So that the Cartan subalgebra currents are

hj(z̄) = ı~αj · ∂̄ ~̄H(z̄), j = 1, ..., 6, where

~̄H(z̄) = (H̄1(z̄), ..., H̄5(z̄), H̄6(z̄)),

H̄6(z̄) =
∑
i

√
ki

3(ki + 2)
φ̄i (z̄),

(35)

Ej(z̄) = exp [ı~αj
~̄H](z̄),

Fj(z̄) = exp [−ı~αj
~̄H](z̄), j = 1, ..., 6.

(36)
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27 of E (6) massless multiplet.
The fundamental 27-representation of the group E (6) consists of a
1-scalar U(1)-subalgebra and a 10-vector, as well as a 16-antispinor
of the SO(10)-subalgebra.

exp [ı
∑
i

ki φ̄i√
ki (ki + 2)

]Φ̄
~l
−~l(z̄),

exp [ıvαH̄α]Φ̄
~l
~l
(z̄),

exp [ıω̇αH̄α +
ı

2

∑
i

ki φ̄i√
ki (ki + 2)

]Φ̄
~l
~l
(z̄),

∑
i

li
ki + 2

= 1, vα = ±1,
∑
α

(vα)2 = 1,

ω̇α = ±1

2
,
∑
α

ω̇α = −1

2
mod 2Z.

(37)

The number of generations 27 of E (6) is equal to the number h21
of the chiral states of the compact factor given by M~k

. 20 / 31



2̄7 of E (6) massless multiplet.
The fundamental 2̄7 representation of the group E (6) splits into a
scalar 1, vector 10 and spinor 16 subalgebras SO(10).

exp [−ı
∑
i

ki φ̄i√
ki (ki + 2)

]Φ̄
~l
~l
(z̄),

exp [ıvαH̄α]Φ̄
~l
−~l(z̄),

exp [ıωαH̄α −
ı

2

∑
i

ki φ̄i√
ki (ki + 2)

]Φ̄
~l
−~l(z̄),

∑
i

li
ki + 2

= 1, vα = ±1,
∑
α

(vα)2 = 1,

ωα = ±1

2
,
∑
α

ωα =
1

2
mod 2Z.

(38)

The number of generations 2̄7 of E (6) is equal to the number h11
of the antichiral states of the compact factor given by the M~k

.
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�E (6) is considered as a possible gauge group for Grand
Uni�cation, which after breaking, give rise to
SU(3)× SU(2)× U(1) gauge group of the Standard Model.

�The way to get this is namely through breaking E (6) to
SO(10)× U(1), after this SO(10) to SU(5)× U(1) and at last
SU(5) to SU(3)× SU(2)× U(1).

�The adjoint 78 of the E (6) breaks into the adjoint 45, spinor 16
and 1̄6, and a singlet 1 of the SO(10) subalgebra.

�The fundamental representation 27 of the E (6) breaks into a
spinor 16, a vector 10 and scalar 1 of the the SO(10) subalgebra.

�Quarks and leptons of each generation of the Standard Model can
be placed in 16 of one of the 27 representations.
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E (6) symmetry and ”GSO” equations
�To obtain a set of states which allows the action of E (6), we have
to select vertices that are not only mutually local with SO(10)
currents , but also with additional E (6) currents.
The currents Σ+

ω (z̄), Σ−ω̇ (z̄) are mutually local with the vertex

V̄ (z̄) = Pgh(b̄, c̄)Pst(∂̄X̄
µ)Pint(∂̄Ȳ

I , ∂̄H̄α, T̄i , J̄i , Ḡ
±
i )

exp [ıkI Ȳ
I + ıΛαH̄

α]Φ̄NS ,R
~l ,~̄q

(z̄),
(39)

if the following "GSO" equations are satis�ed

ω · Λ +
1

2

∑
i

(
q̄i

ki + 2
− 1

2
s̄ iL) ∈ Z. (40)

These "GSO" equations mean that 6-vector

(Λ,
5∑

i=1

Q i
R), where Q i

R =
q̄i

ki + 2
− 1

2
s̄ i (41)

must be an E (6) weight lattice vector.
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E (6) symmetry and ”GSO” equations

�From the ”GSO” equations in right-moving sector we get that the
SO(10) parts of the solutions of the right vertices, that fall into
one of the four conjugacy classes, determine the sixth, internal
component as follows

~Λ ∈ [0]⇒
∑
α

uαΛα = 0 mod 1⇒
∑
i

Q i
R ∈ 2Z,

~Λ ∈ [V ]⇒
∑
α

uαΛα =
1

2
mod 1⇒

∑
i

Q i
R ∈ 2Z + 1,

~Λ ∈ [S ]⇒
∑
α

uαΛα =
1

4
mod 1⇒

∑
i

Q i
R ∈ 2Z− 1

2
,

~Λ ∈ [C ]⇒
∑
α

uαΛα = −1

4
mod 1⇒

∑
i

Q i
L ∈ 2Z +

1

2
.

(42)

24 / 31



Mutual locality of complete physical vertices
�Let's start the search for mutually local complete vertices as the
following �quasi-diagonal� product of GSO-invariant left-moving
and �GSO�-invariant right-moving factors

V~l~µL,~µR (z , z̄) = V
~l
~µL

(z)× V̄
~l
~µR

(z̄) =

PL
gh(β, γ, b, c)PL

st(∂X
µ, ∂Hα) exp [qφ+ ıλaHa](z)Φ~l ,~qL,~sL(z)×

× PR
gh(b̄, c̄)PR

st(∂̄X̄µ) exp [ıεI ȲI + ıΛaH̄a](z̄)Φ̄~l ,~qR ,~sR (z̄),

(43)
where we imposed the following �quasi-diagonal� relation on the
compact factors

~qL = ~qR , ~sL = ~sR .

�The product of two such vertices, after moving one around the
other, receives a complex factor whose monodromy phase is

2πı(−qq′ + ~λ · ~λ′ − ~Λ · ~Λ′).
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Mutual locality of the complete physical vertices

�Since we also assumed that the internal charges in the left and
right sectors are the same, this leads to certain correlations between
the classes ~λ and ~Λ.

�The reason, as has been shown, is that GSO equations and the
requirement N = 1 to permit Virasoro action lead to a correlation
between pictures q, classes of ~λ and total internal charges in the
left-moving sector.

�The same is correct for classes of ~Λ and total internal charges in
the riht-moving sector because of ”GSO” equations.

�In result, we get the four types of quasi-diagonal complete vertices
that satisfy these requirements.
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∑
i

Q i ∈ 2Z⇒ q = −1, λ ∈ [V ], Λ ∈ [0],∑
i

Q i ∈ 2Z + 1⇒ q = −1, λ ∈ [0], Λ ∈ [V ],

∑
i

Q i ∈ 2Z +
1

2
⇒ q = −1

2
, λ ∈ [C ], Λ ∈ [C ],

∑
i

Q i ∈ 2Z− 1

2
⇒ q =

1

2
, λ ∈ [S ], Λ ∈ [S ].

(44)

�After moving one of these vertices around the other, a
monodromy phase occurs, which is integer because

~µL · ~µ′L − ~µR · ~µ′R = −qq′ + ~λ · ~λ′ − ~Λ · ~Λ′ ∈ Z. (45)

�Thus, the vertices are mutually local due to the correlation of the
internal charges

∑
Q i , SO(1, 3) weights λ and SO(10) weights Λ.

�As Gepner showed, such replacement singlet and vector SO(1, 3)
(for left movers) with vector and singlet SO(10) (for right movers)
is necessary to ensure modular invariance of the theory. 27 / 31



Space-time supersymmetry, non-diagonal complete vertices

and mutual locality
�The consistency with SUSY also requires to admit nondiagonal
complete vertices with ~qL 6= ~qR and ~sL 6= ~sR since the action of
SUSY charges on a diagonal vertex produces superpartners of
non-diagonal types.

�The superpartners are generated by ~β0 shifts ~µL → ~µL + n~β0,
these non-diagonal vertices obviously satisfy GSO equations.

�The deformations generated by ~β1,...,~β7 are also consistent with
SUSY action.

�It is easy to check the mutual locality of any pair of complete
vertices obtained by this way. Indeed the monodromy phase is given
by

(~µL −mi ~βi ) · (~̃µL − m̃j ~βj)− ~µR · ~µR =

m̃imj ~βi · ~βj − m̃j ~βj · ~µL −mi ~βi · ~̃µL ∈ Z.
(46)
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Massless supermultiplets and gauge multiplets

�The last relation means that the set of vectors ~w∗ ≡ ~qR − ~w
forms a dual admissible group de�ning a mirror orbifold.

�It can be shown that applying SUSY operators to this mutually
local subset of vertices does not violate mutual locality. In this way
we generate supermultiplets of mutually local complete vertices.

�Due to the right "GSO" conditions this set of vertices is also
compatible with the action E (8)× E (6)× U(1)4 gauge group.

�For phenomenological application, massless states of them are
most important.

�These include the N = 1 supergravity multiplet, the vector
multiplet whose gauge �elds transform in the adjoint representation
of E (8)× E (6), 27 and 2̄7 multiplets of E (6), as well as singlets of
gauge algebras.
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27 and 2̄7 multiplets of algebra E (6)
�27 multiplets of algebra E (6) which could include h11 generations
of quarks/leptons of Standard model

exp [−φ]Φ
~l
~l
(z)× exp [ı

∑
i

ki φ̄i√
ki (ki + 2)

]Φ̄
~l
−~l(z̄),

∑
i

li
ki + 2

= 1,

+ (10 + 16) E (6) partners + superpartners.

(47)

�2̄7 multiplets of algebra E (6) which could include h21
anti-generations of quarks/leptons of Standard model

exp [−φ]Φ
~l
~l
(z)× exp [−ı

∑
i

ki φ̄i√
ki (ki + 2)

]Φ̄
~l
~l
(z̄),

∑
i

li
ki + 2

= 1,

+ (10 + 16) E (6) partners + superpartners.

(48)
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Singlets in Quintic case, ki = 3
�In the left-moving sector we have massless chiral or anti-chiral
scalars.
The right moving sector contains the next set of massless gauge
singlets (dark matter candidates!)

W c
~l ,i

(z̄) = Ḡ−
i ,− 1

2

Φ̄c
~l

(z̄),
∑
i

li
ki + 2

= 1, (49)

Φ̄c
~l

(z̄) is a chiral primary �eld.

W a
~l ,i

(z̄) = Ḡ+
i ,− 1

2

Φ̄a
~l
(z̄),

∑
i

li
ki + 2

= 1, (50)

Φ̄a
~l
(z̄) is an anti-chiral primary �eld.

�The products of these left- and right- moving factors yield a set of
310 complete singlet vertices in the Quintic case

Vc,c~l ,i
(z , z̄) = exp(−φ(z))Ḡ−

i ,− 1
2

Ψc,c
~l

(z , z̄) exp (ıpµX
µ),

Va,c~l ,i (z , z̄) = exp(−φ(z))Ḡ−
i ,− 1

2

Ψa,c
~l

(z , z̄) exp (ıpµX
µ).

(51)
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