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Motivation

◮ The integrability-preserving deformations of O(N) sigma models are known to
admit the dual description in terms of a coupled theory of bosons and Dirac
fermions with exponential interactions of the Toda type (Fateev, Onofri,
Zamolodchikov’93, Fateev’04, Litvinov, Spodyneiko’18).

◮ On the other hand, there are known examples of the integrable superstring
theories, such as type IIB AdS5 × S5 (dual to N = 4 SYM) and others, which
also have integrable deformations.

◮ Our strategic goal is to build a similar dual description for the deformed
AdS5 × S5 type IIB superstring (Arutyunov, Frolov et al.) and, possibly, other
theories of this type.

◮ There are three major problems on this way:

1. Incorporate the fermionic degrees of freedom into the construction of dual theory.

2. Adapt the whole construction to describe the sigma models with non-compact target
space.

3. The superstring theory possesses the reparametrization symmetry and requires gauge
fixing, which implies inclusion of this symmetry into the dual description.

◮ In this talk we are going to address the general scheme to build the dual
description of the deformed O(N) and OSp(N |2m) sigma models.
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Building of the dual model
Guiding principles to look for the dual description (Litvinov, Spodyneiko’18)

1. The theory has to be renormalizable (at least 1-loop). In the case of the deformed
O(N) and OSp(N |2m) it can be checked by solving the RG flow equation.

2. The dual theory is found as an integrable perturbation from the special “free”
point of the S-matrix and is determined by the set of screening charges, which
commute with the integrals of motion in the leading order in the mass parameter

[
Ifreek ,

∫
e(αr,φ)dz

]
= 0 .

3. In the case of the deformed O(3) they are ebΦ+iβϕ, ebΦ−iβϕ, e−bΦ+iβϕ and
e−bΦ−iβϕ, where b is some continuous parameter and β =

√
1 + b2. Also, for

instance, the two operators ebΦ+iβϕ and ebΦ−iβϕ define sine-Liouville CFT,
therefore the dual description can be understood as an integrable perturbation of
this CFT.

4. Our O(N) and OSP (N |2m) models are integrable deformations of some CFT,
based on the cosets

ŝo(N)w

ŝo(N − 1)w
and

ôsp(N |2m)w

ôsp(N − 1|2m)w
.

respectively.
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CFT’s defined by screening charges
◮ Let ϕ(z) = (ϕ1(z), . . . , ϕN (z)) be the N−component holomorphic bosonic field

normalized as

ϕi(z)ϕj(z
′) = −δij log(z − z′) + . . . at z → z′,

and ~α = (α1, . . . ,αN ) be the set of linear independent vectors.

◮ We define W~α-algebra as a set of currents Ws(z) of integer spins s such that
∮

Cz

e(αr ·ϕ(ξ))Ws(z)dξ = 0 , r = 1, . . . , N .

◮ For generic ~α there is a spin 2 current

W2(z) = −1

2
(∂ϕ(z) · ∂ϕ(z)) + (ρ · ∂2ϕ(z)) , ρ =

N∑

r=1

(
1 +

(αr · αr)

2

)
α̂r ,

and (αr · α̂s) = δr,s. The corresponding central charge is

c = N + 12(ρ · ρ) .
◮ For N = 1 we have a current

T (ϕ) = −1

2
(∂ϕ)2 +

(
1

α
+
α

2

)
∂2ϕ .

The same algebra can be defined through the dual screening charge
∮
eα

∨ϕdz

with α∨ = 2
α
.
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Bosonic and fermionic roots
◮ Depiction of bosonic roots

– bosonic root: (αr ·αr) = generic

◮ If the current Ws satisfies commutativity condition it should be of a special form

Ws = Ws

(
T
(
ϕ‖

)
,ϕ⊥

)
,

where

ϕ‖
def
=

(αr · ϕ)

(αr ·αr)
1
2

, ϕ⊥
def
= ϕ− (αr · ϕ)

(αr · αr)
αr ,

and T
(
ϕ‖

)
is given by W2(z) with α = (αr · αr)

1
2 .

◮ Depiction of fermionic roots

– fermionic root: (αr · αr) = −1

◮ In the coordinates defined above it corresponds to the complex fermion. The

communant of the corresponding screening charge
∮
e
−iϕ‖(z)dz consists of all

ws = ψ+∂s−1ψ, s = 2, 3, . . .

◮ Among these currents only w2 and w3 are independent. Therefore

Ws = Ws

(
w2

(
ϕ‖

)
, w3

(
ϕ‖

)
,ϕ⊥

)
.
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Properties of the systems with bosonic/fermionic roots
◮ Bosonic root duality: the bosonic roots always appear in pairs

α and α∨ =
2α

(α ·α)
.

◮ Dressed/sigma-model bosonic screening: (α1 · α2) = ξ is arbitrary

SB =

∮
(α1 · ∂ϕ)e(β12·ϕ)dz, where β12 =

2(α1 +α2)

(α1 +α2)2

ξ

α1 α2

◮ Dressed/sigma-model fermionic screening: (α1 ·α2) = −1

SF =

∮
(α1 · ∂ϕ)e(β12·ϕ)dz, where β12 = να1 − (1 + ν)α2

α1 α2
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Dressed/sigma-model fermionic screening
◮ The parameter ν cannot be fixed if only the two roots α1 and α2 are present.
◮ One way to fix the parameter ν is to embed in larger diagram. For example,

consider the diagram

ξ

α1 α2 α3

Then the parameter ν in the vector β23 is fixed from the condition

(β23 ·α1) = −1 =⇒ ν = −1

ξ
.

◮ Another case also important for us is

ξ

α1 α2 α3 α4

Then the parameter ν in the vector β34 is fixed from the condition

(β34 ·α2) = 1− ξ =⇒ ν = ξ − 1.
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Fermionic reflection

◮ There is another transformation, which involves given screening and neighbouring
ones (Litvinov, Spodyneiko’16).

◮ This transormation is based on the Coulomb integral identities (Baseilhac,
Fateev’99).

◮ If we have a CFT, defined by a set of screenings Sj =
∮
e(αj ,ϕ(z))dz, then the

same CFT is defined by a set of screenings S̃j =
∮
e(α̃j ,ϕ(z))dz with

α̃j =






−αj if j = r ,

αj +αr if (αj ,αr) 6= 0 ,

αj otherwise

for the fermionic reflection with respect to the screening αr.

◮ This operation can be illustrated with an example

ξ −1−ξ

α1 α2 α3

fermionic reflection

−1−ξ ξ

α1+α2 −α2 α3+α2
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Deformed O(3) sigma model

◮ We want to check whether the metric is consistent with the screening charges
corresponding to the η- and λ-deformed O(3) sigma model (Fateev et al.’93).

◮ Let us recall that the theory in question may be determined by the following set
of fermionic screenings

β12

1+2b2 1+2b2

−1−2b2

−1−2b2

β34

α1

α2 α3

α4

β23

β14

◮ By utilizing Cartesian coordinates as in (Litvinov, Spodyneiko’18) we can
parametrize the fermionic screening lengths as follows

α1 = bE1 + iβe1 , α2 = bE1 − iβe1 ,

α3 = −bE1 + iβe1 , α4 = −bE1 − iβe1 .
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Deformed O(5) sigma model
◮ Screening picture and corresponding underlying CFT

ŝo(5)
−b2−3

ŝo(4)
−b2−3

with the central

charge c = 4 + 30
b2

− 12
1+b2

lead to the following diagrams

α1

α2

α4

α5

α3

1+2b2 −1−2b2

−b2

−b2

1+b2

1+b2 −b2

−b2

1+2b2
1+b2

α1

α2

α3 α4

◮ Different applications of fermionic reflections lead to

−2b2 −b2 1+b2

α1+α2 α3+α4 −α2−α3−α4 α2+α3

1+b2

1+b2

−b2

α1+α3

α2+α3

−α3 α4+α3
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Deformed O(N) model
◮ Therefore, these two representations above can be encoded in the following

picture consisting of N screenings

−2b2 −b2 1+b2

1+b2

1+b2

◮ Application of fermionic reflections in both cases leads to the CFT, integrable
deformation of which leads to the set of screenings describing the O(N) sigma
model

−b2 1+b2 1+b2 −b2

1+b2

1+b2
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Blow-up transformation

◮ Now we describe transformation B of the root system, we call it blow-up, which
acts as

O(N) → OSP (N |2) ,
or more generally as

OSP (N |2m) → OSP (N |2m+ 2) .

It can be applied to both conformal diagram and its affine counterpart.

◮ It acts on any root except α1, α2, α2n and α2n+1 and produces two fermionic
roots out of one. On fermionic root α it acts as follows

α = −bE + iβe
B−→ {β1,β2} =

{
−1

b
E +

iβ

b
ǫ,
ib

β
ǫ− i

β
e

}
,

where ǫ is a new basis vector.

◮ Altogether this can be shown as follows

−b2 1+b2

α− α α+

B−→
α− β1 β2 α+

β− α β+
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Screening charges for the deformed OSp(5|2) sigma model

◮ Consider the simplest case of OSP (5|2) affine diagram. According to our rule it
is obtained from O(5) diagram by blowing up the root α3

α1

α2

α4

α5

α3

1+2b2 −1−2b2

−b2

−b2

1+b2

1+b2

β12 β45

α1

α2

α4

α5

β1 β2

β
+
− β

+
+

β
−
+

β
−
−

α3

◮ The vectors αr can be parameterized as follows (β =
√
1 + b2)

α1 = bE1 + iβe1 , α2 = bE1 − iβe1 , α3 = −bE1 + iβe2 ,

α4 = bE2 − iβe2 , α5 = −bE2 − iβe2 ,

β1 = −1

b
E1 +

iβ

b
ǫ , β2 =

ib

β
ǫ− i

β
e2 , β±

− = ± i

β
e1 − ib

β
ǫ ,

β±
+ = ±1

b
E2 − iβ

b
ǫ , β12 =

1

b
E1 , β45 =

i

β
e2 .
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Metric for the deformed OSp(5|2) sigma model
◮ By taking the dual screenings we obtain the following system, which includes the

dressed screenings

1+ 1

b2

1+ 1

b2

β
−
+

β
+
+

β1
β12

− 1

b2

◮ By choosing z = x1 − ix2 (z̄ = x1 + ix2) and then conducting Wick rotation
x2 = ix0, we obtain the action in Minkowski signature

L =
1

8π




2∑

i=1

(∂+Φi)(∂−Φi) +
3∑

j=1

(∂+φj)(∂−φj)



+

+ Λ1e
−

iβ
b

φ3

(
∂+ (bΦ2 + iβφ2) ∂− (bΦ2 − iβφ2) e

−
Φ2
b +

+∂+ (bΦ2 − iβφ2) ∂− (bΦ2 + iβφ2) e
Φ2
b

)

+ Λ2e
−

Φ1
b

+
iβ
b

φ3+

+ Λ3∂+ (bΦ1 + iβφ1) ∂− (bΦ1 − iβφ1) e
Φ1
b +

πb2

β2
Λ1Λ2e

Φ1
b ×

×

(

∂+ (bΦ2 + iβφ2) ∂− (bΦ2 − iβφ2) e
−

Φ2
b + ∂+ (bΦ2 − iβφ2) ∂− (bΦ2 + iβφ2) e

Φ2
b

)

+. . . ,
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Screening charges in the b → 0 limit

◮ By taking the subsystem of screenings, which are regular in the limit b → 0

α1

α2

α4

α5

α3

1+2b2 −1−2b2

−b2

−b2

1+b2

1+b2

◮ We are able to write the lagrangian of the dual model

L =
1

8π




2∑

i=1

(∂Φi)(∂̄Φi) +

3∑

j=1

(∂ϕj)(∂̄ϕj)



+ 2Λ1e
bΦ1 cos βϕ1+

+Λ2∂(Φ1 − iβϕ3)∂̄(Φ1 + iβϕ3)e
−bΦ1+iβϕ2+

+ Λ3

(
e−bΦ2−iβϕ2 + ebΦ2−iβϕ2

)
+ (counterterms)

◮ This action appears to have only finite number of counterterms!
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Deformed OSp(7|2) sigma model
◮ There exist two integrable deformations of OSp(7|2) sigma models, first of them

is described by

β12

α1

α2

β1 β2

β
+

−

β
−
−

α3 β+

α4

β45

α5

α7

α6

β56

β57

β67

◮ The second one is described by the screenings

β12

α1

α2

α3 α4

β23

β13

β34 β−

β1

α5

β2

α7

α6

β
+
+

β
−
+

β67
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Metric and b → 0 limit for the OSp(7|2) sigma model
◮ Metric of the both deformations of OSp(7|2) sigma model

− 1

b2

− 1

b2

β56

β57

β+
β1 β12

1+ 1

b2
− 1

b2

1+ 1

b2

1+ 1

b2

β
−
+

β
+
+

β1
β34 β12

− 1

b2
− 1

b2

◮ Respectively in the b → 0 limit we obtain the following screening charges

α1

α2

α3 α4 α5

α6

α7

1+2b2 −1−2b2

−b2

−b2

1+b2

1+b2

1+b2 −b2

α1

α2

α3 α4 α5

α6

α7

1+2b2 −1−2b2

−b2

−b2

1+b2

1+b2

1+b2 −b2
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Set of screenings for general OSp(N |2m) sigma model
◮ In the case of OSp(7|2) and OSp(7|4) we are able to obtain the underlying CFT

respectively from the diagrams

−1

1+b2 1+b2

1+b2

1+ 1

b2
1+ 1

b2
2
(
1+ 1

b2

)

−1

−1

−b2 1+b2
1+b2

1+b2

− 1

b2
1+ 1

b2
1+ 1

b2
2
(
1+ 1

b2

)

◮ Based on the information above, we can put forward the hypothesis for the
structure of the screening for general N and m

−1

−1

−b2 1+b2
1+b2

1+b2

− 1

b2
1+ 1

b2
2
(
1+ 1

b2

)
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Conclusions

Results obtained:

◮ Presented a systematic way to generate the screening charges picture for
deformed O(N) sigma models.

◮ The system of screening charges, which determines the integrable structure of the
OSp(N |2) sigma model, was built.

◮ By using it we demonstrated how to restore the sigma model action in the deep
UV in the cases of OSp(5|2) and OSp(7|2).

◮ Utilized our system of screenings to write the dual model with the Toda type
interactions in the cases of OSp(5|2) and OSp(7|2).

◮ Put forward a hypothesis on the method to build the set of screening charges for
general deformed OSp(N |2m) sigma model.

Future goals:

◮ Find the system of screening charges for a wider class of integrable sigma models.

◮ The next interesting step would be to try to adapt the dual description for the
sigma models with the non-compact target space (Basso, Zhong’18).

◮ Include reparametrization invariance into the dual description.
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Thanks for your attention!
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