Efim Fradkin Centennial Conference, Lebedev Institute, September 2-6, 2024

Poisson Gauge Theory and Symplectic Groupoids

Alexey Sharapov

Department of Quantum Field Theory Tomsk State University

02.09.2024

- Motivations: Why Noncommutative Field Theory?
- NFT in semiclassical approximation
- Symplectic groupoids as a kinematical arena for NFT
- Poisson Electrodynamics
- Conclusions

Noncommutative Field Theory in Semiclassical Approximation

Noncommutative Field Theory proceeds from the fundamental hypothesis that spacetime coordinates are noncommuting operators rather than real numbers,

$$[\hat{x}^{\mu}, \hat{x}^{\nu}] = \hat{\pi}^{\mu\nu} \qquad \Rightarrow \qquad \Delta x^{\mu} \Delta x^{\nu} \ge |\pi^{\mu\nu}|$$

[W. Heisenberg, 1938; H. S. Snyder, 1947; ... N. Seiberg & E. Witten, 1999; ...]

One can further assume these commutation relations to come from the quantization of classical Poisson brackets on the spacetime manifold X:

$$\{x^{\mu}, x^{\nu}\} = \pi^{\mu\nu}(x)$$

Poisson Electrodynamics is the semiclassical/low-energy limit of U(1) Noncommutative Gauge Theory where all commutators are replaced by Poisson brackets. The Lie algebra of infinitesimal gauge transformations is postulated in the form

$$[\delta_{\varepsilon_1}, \delta_{\varepsilon_2}] = \delta_{\{\varepsilon_1, \varepsilon_2\}}$$
 [V. G. Kupriyanov, 2021]

Basic Logic Behind Poisson Electrodynamics

In ordinary electrodynamics, electromagnetic potentials

 $A = A_{\mu}(x) \mathrm{d}x^{\mu} \in \Lambda^{1}(X)$

are sections of the cotangent bundle T^*X of the spacetime manifold X:

 $A: X \to T^*X$.

On the other hand, T^*X is the phase space of a point particle in X. The canonical symplectic structure

 $\omega = \mathrm{d}p_{\mu} \wedge \mathrm{d}x^{\mu}$

allows one to define the strength tensor of the electromagnetic field as the pull-back

$$F = dA = A^*(\omega) \in \Lambda^2(X)$$
.

Phase Space Over a Non-commutative Spacetime

Q: What is the phase space of a point particle living in a noncommutative space-time (X, π) ?

It is certainly not $T^{\ast}X$ and the naive Poisson brackets

 $\{x^{\mu}, x^{\mu}\} = \pi^{\mu\nu}(x), \qquad \{p_{\mu}, x^{\nu}\} = \delta^{\nu}_{\mu}, \qquad \{p_{\mu}, p_{\nu}\} = 0$

do not work! Mathematically, we need to construct a symplectic realization of (X, π) , i.e. a symplectic manifold (\mathcal{G}, ω) together with a Poisson map $p : \mathcal{G} \to X$.

In general, the problem of symplectic realization may have many solutions.

A: (\mathcal{G}, ω) is a symplectic groupoid integrating a given Poisson manifold (X, π) .

NB: When a symplectic groupoid exists, it is essentially unique; the corresponding Poisson structure is called **integrable**.

Poisson Groupoids as Phase Spaces

Symplectic groupoid $(\mathcal{G}, \omega) \rightrightarrows (X, \pi)$:

- (\mathcal{G}, ω) is a symplectic manifold $(\dim \mathcal{G} = 2 \dim X)$
- There are two canonical projections $s, t : \mathcal{G} \to X$ (source and target):

 $\{s^*f, s^*g\}_{\mathcal{G}} = \{f, g\}_X, \ \{t^*f, t^*g\}_{\mathcal{G}} = -\{f, g\}_X$

- The group $\mathscr{B}(\mathcal{G})$ of bisections Σ
- The subgroup $\mathscr{L}(\mathcal{G}) \subset \mathscr{B}(\mathcal{G})$ of Lagrangian bisections $(\omega|_{\Sigma} = 0)$

The source map $s : \mathcal{G} \to X$ defines a symplectic realization of the Poisson manifold (X, π) .

An ordinary(=commutative) spacetime X corresponds to $\pi = 0$. In this case,

$$\mathcal{G} = T^*X$$
, $\mathbf{s} = \mathbf{t} = p : T^*X \to X$,
 $\omega = \mathrm{d}p_\mu \wedge \mathrm{d}x^\mu$.

The group of bisections $\mathscr{B}(\mathcal{G}) = \Lambda^1(X)$ is the abelian group with the multiplication law

$$A_1 + A_2 \qquad \forall A_1, A_2 \in \Lambda^1(X) \,.$$

It acts trivially on X.

The subgroup of Lagrangian bisections $\mathscr{L}(\mathcal{G}) \subset \mathscr{B}(\mathcal{G})$ is given by closed 1-forms $A = A_{\mu} dx^{\mu}$:

$$\mathscr{L}(\mathcal{G}) \ni A \qquad \Leftrightarrow \qquad \omega|_{p_{\mu}=A_{\mu}}=0 \qquad \Leftrightarrow \qquad \mathrm{d}A=0\,.$$

Example: Linear Poisson Brackets

$$\{x^{\mu}, x^{\nu}\} = f^{\mu\nu}_{\lambda} x^{\lambda}$$

- f_k^{ij} are structure constants of a Lie algebra \mathfrak{g} , so that $x \in \mathfrak{g}^*$.
- $\mathcal{G} = T^*G \simeq G \times \mathfrak{g}^*$, where G is a Lie group integrating \mathfrak{g} .
- The source and target maps: $\mathsf{s}(g,x) = x$, $\mathsf{t}(g,x) = \mathrm{Ad}_g^* x$.
- ω is the canonical symplectic structure on T^*G ,

$$\omega = \mathrm{d}\theta, \qquad \theta = \langle x, g^{-1}\mathrm{d}g \rangle.$$

• Bisections: $\Sigma_{\mathsf{s}}: \mathfrak{g}^* \to G$, $\Sigma_{\mathsf{t}}: \mathfrak{g}^* \to G$.

NB: If G is a compact Lie group, then so is the momentum space of the particle !

P1: The physical spacetime is a smooth manifold X endowed with a Poisson bivector π .

- P2: The phase space of a point charged particle on X is a symplectic groupoid $\mathcal{G} \rightrightarrows X$ integrating the Poisson manifold (X, π) .
- P3: The configuration space of the electromagnetic field is identified with the group of bisections $\mathscr{B}(\mathcal{G})$ of the symplectic groupoid $\mathcal{G} \rightrightarrows X$.
- P4: The gauge group of the electromagnetic field is given by the subgroup of Lagrangian bisections $\mathscr{L}(\mathcal{G}) \subset \mathscr{B}(\mathcal{G})$; the group $\mathscr{L}(\mathcal{G})$ acts on $\mathscr{B}(\mathcal{G})$ by right translations.

[V. G. Kupriyanov, A.A.Sh, and R. J. Szabo, 2024]

Strength Tensors

The gauge invariant and gauge covariant strength tensors:

$$F^{\mathsf{t}}(\Sigma) = \Sigma^*_{\mathsf{t}}\omega, \qquad F^{\mathsf{s}}(\Sigma) = \Sigma^*_{\mathsf{s}}\omega \qquad \in \Lambda^2(X).$$

Properties:

- $\mathrm{d}F^{\mathsf{s}} = \mathrm{d}F^{\mathsf{t}} = 0$,
- Non-abelian superposition:

$$F^{s}(\Sigma_{1}\Sigma_{2}) = F^{s}(\Sigma_{2}) + l^{*}_{\Sigma_{2}}F^{s}(\Sigma_{1}), \qquad F^{t}(\Sigma_{1}\Sigma_{2}) = F^{t}(\Sigma_{1}) + r^{*}_{\Sigma_{1}}F^{t}(\Sigma_{2}).$$

[The generalisation of the usual additivity: $F(A_1 + A_2) = F(A_1) + F(A_2)$.]

• If $\Sigma_2 \in \mathscr{L}(\mathcal{G})$, then $F^{s}(\Sigma_2) = F^{t}(\Sigma_2) = 0$ and

$$F^{\mathsf{t}}(\Sigma_1 \Sigma_2) = F^{\mathsf{t}}(\Sigma_1), \qquad F^{\mathsf{s}}(\Sigma_1 \Sigma_2) = l^*_{\Sigma_2} F^{\mathsf{s}}(\Sigma_1).$$

 $\bullet \ F^{\rm s}(\Sigma) = l^*_\Sigma F^{\rm t}(\Sigma)\,, \qquad F^{\rm t}(\Sigma) = r^*_\Sigma F^{\rm s}(\Sigma)\,.$

Action

Gauge invariant and gauge covariant Lagrangians:

$$\mathcal{L}_{\mathrm{inv}} = \mathcal{L}(F^{\mathsf{t}}, g, \pi, \ldots) \in \Lambda^{\mathrm{top}}(X) \quad \Leftrightarrow \quad \mathcal{L}_{\mathrm{cov}} = l_{\Sigma}^* \mathcal{L}_{\mathrm{inv}} = \mathcal{L}(F^{\mathsf{s}}, l_{\Sigma}^* g, l_{\Sigma}^* \pi, \ldots)$$

Since $l^*_{\Sigma\Sigma'} = l^*_{\Sigma'} l^*_{\Sigma}$, under the gauge transformations

$$\Sigma \to \Sigma \Sigma' \quad \Rightarrow \quad \mathcal{L}_{cov} \to l_{\Sigma'}^* \mathcal{L}_{cov} \qquad \forall \Sigma' \in \mathscr{L}(\mathcal{G}) \,.$$

A gauge invariant action:

$$\int_X \mathcal{L}_{\rm cov} = S_{\rm em}[\Sigma] = \int_X \mathcal{L}_{\rm inv} \,.$$

NB: \mathcal{L}_{cov} is local, while \mathcal{L}_{inv} is generally nonlocal; they are related by a nonlocal field redefinition.

Minimal Coupling to Matter Fields

Let Φ be a complex field and $\mathcal{L}(\Phi, \partial_{\mu}\Phi, \ldots)$ be a U(1) invariant Lagrangian.

$$\mathrm{d}F^{\mathsf{t}}(\Sigma) = 0 \qquad \Rightarrow \qquad F^{\mathsf{t}}(\Sigma) = \mathrm{d}\theta(\Sigma)$$

$$F^{\mathsf{t}}(\Sigma\Sigma') = F^{\mathsf{t}}(\Sigma) \qquad \Rightarrow \qquad \theta(\Sigma\Sigma') = \theta(\Sigma) + \mathrm{d}\alpha(\Sigma,\Sigma') \qquad \forall \Sigma' \in \mathscr{L}(\mathcal{G})$$

The minimal coupling is now introduced through the covariant derivative:

$$\partial_{\mu}\Phi \quad \rightarrow \quad D_{\mu}\Phi = \partial_{\mu}\Phi + i\theta_{\mu}(\Sigma)\Phi \,.$$

Then the Lagrangian $\mathcal{L}(\Phi, D_{\mu}\Phi)$ is invariant under the gauge transformations

$$\Sigma \to \Sigma \Sigma', \qquad \Phi \to e^{-i\alpha(\Sigma,\Sigma')} \Phi \qquad \forall \Sigma' \in \mathscr{L}(\mathcal{G}).$$

In the commutative limit $(\pi \rightarrow 0)$, this reproduces the minimal coupling and gauge transformations of the ordinary electrodynamics. [A.A.Sh., 2024]

- In semiclassical/low-energy limit, the noncommutativity of spacetime is controlled by an integrable Poisson structure; the corresponding symplectic groupoid plays the role of the phase space of a point (charged) particle.
- The electromagnetic field is identified with the bisections of the symplectic groupoid; the pull-backs of the symplectic 2-form by bisections give rise to the gauge-invariant and gauge-covariant strength tensors.
- The electromagnetic field admits a minimal coupling to complex matter fields with a good commutative limit.
- In general, the momentum space of a point particle and the target space of the electromagnetic field is a nontrivial (curved) manifold rather than a linear space.