Efim Fradkin Centennial Conference, Lebedev Institute, September 2-6, 2024

Poisson Gauge Theory and Symplectic Groupoids

Alexey Sharapov

Department of Quantum Field Theory
Tomsk State University

02.09.2024

1/13



Motivations: Why Noncommutative Field Theory?

NFT in semiclassical approximation

Symplectic groupoids as a kinematical arena for NFT

Poisson Electrodynamics

e Conclusions

2/13



Noncommutative Field Theory in Semiclassical Approximation

Noncommutative Field Theory proceeds from the fundamental hypothesis that spacetime
coordinates are noncommuting operators rather than real numbers,

[ZH, z¥] = 7 = Azt Ax” > |7H|
[W. Heisenberg, 1938; H. S. Snyder, 1947; ... N. Seiberg & E. Witten, 1999; ...]

One can further assume these commutation relations to come from the quantization of classical
Poisson brackets on the spacetime manifold X:

{a, 2"} = ()

Poisson Electrodynamics is the semiclassical/low-energy limit of U(1) Noncommutative
Gauge Theory where all commutators are replaced by Poisson brackets. The Lie algebra of
infinitesimal gauge transformations is postulated in the form

[0c,,0s,] = Ofey e} [V. G. Kupriyanov, 2021]
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Basic Logic Behind Poisson Electrodynamics

In ordinary electrodynamics, electromagnetic potentials
A=A, (r)dz" € N(X)
are sections of the cotangent bundle T*X of the spacetime manifold X:
A X —-T'X.

On the other hand, T*X is the phase space of a point particle in X. The canonical symplectic
structure
w = dp, A dzt

allows one to define the strength tensor of the electromagnetic field as the pull-back

F =dA = A*(w) € N*¥(X).
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Phase Space Over a Non-commutative Spacetime

Q: What is the phase space of a point particle living in a noncommutative space-time (X, 7)?

It is certainly not 7* X and the naive Poisson brackets

{a# 2"} =a(z),  Apw,a"} =0,  Apuwpe}=0

do not work! Mathematically, we need to construct a symplectic realization of (X, ),
i.e. a symplectic manifold (G,w) together with a Poisson mapp:G — X .

In general, the problem of symplectic realization may have many solutions.
A: (G,w) is a symplectic groupoid integrating a given Poisson manifold (X, 7).

NB: When a symplectic groupoid exists, it is essentially unique; the corresponding Poisson
structure is called integrable.
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Poisson Groupoids as Phase Spaces

Symplectic groupoid (G,w) = (X, 7):

® (G,w) is a symplectic manifold
(dim G = 2dim X)

® There are two canonical projections
s,t: G — X (source and target):

{S*fv S*g}g = {fvg}Xv {t*fv t*g}g = _{fvg}X

t-fibers s-fibers ® The group #(G) of bisections ¥

® The subgroup Z(G) C #(G) of Lagrangian
bisections (w|x = 0)

The source map s: G — X defines a symplectic realization of the Poisson manifold (X, 7).
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Example: Zero Poisson Brackets

An ordinary(=commutative) spacetime X corresponds to m = 0. In this case,
G=T"'X, s=t=p:T"X > X,

w=dp, Adx".
The group of bisections %(G) = A'(X) is the abelian group with the multiplication law

Al + Ay VA Ay € N(X).
It acts trivially on X.

The subgroup of Lagrangian bisections .Z(G) C #(G) is given by closed 1-forms A = A, dx*:

Z(G)3 A & Wlp,=4, =0 & dA=0.
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Example: Linear Poisson Brackets

{:L'Mv xu} = fful‘)\

° flij are structure constants of a Lie algebra g, so that z € g*.

® G=T*G ~ G x g*, where GG is a Lie group integrating g.

The source and target maps:  s(g,z) = x, t(g,z) = Adyx .

®  is the canonical symplectic structure on T*G,

w=da, 6= (x,g 'dg).

Bisections: Y¢:g* — G, Yiigt—= G

NB: If G is a compact Lie group, then so is the momentum space of the particle !
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Postulates of Poisson Electrodynamics

P1: The physical spacetime is a smooth manifold X endowed with a Poisson bivector 7.

P2: The phase space of a point charged particle on X is a symplectic groupoid G = X
integrating the Poisson manifold (X, 7).

P3: The configuration space of the electromagnetic field is identified with the group of
bisections Z(G) of the symplectic groupoid G = X.

P4: The gauge group of the electromagnetic field is given by the subgroup of Lagrangian
bisections .Z(G) C A(G); the group £(G) acts on A(G) by right translations.

[V. G. Kupriyanov, A.A.Sh, and R. J. Szabo, 2024]
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Strength Tensors

The gauge invariant and gauge covariant strength tensors:
F'(2)=%w, F(%)=3Xw e N(X).

Properties:
e dFs=dF* =0,
® Non-abelian superposition:

F5(2122) = FS(EQ) + ZEQFS(El) , Ft(zlzg) = Ft(El) + ’I"glFt(Eg) .

[The generalisation of the usual additivity: F(A; + Ay) = F(A;) + F(Ag).]
o If 3y € Z(G), then F5(33) = F*(X2) =0 and

FY(¥13,) = FY(%1), F3(X1%,) =I5, F5(%1) .

o FS(N) = ILFY),  FYY) = riF5(%).

10/13



Gauge invariant and gauge covariant Lagrangians:
Liny = L(FY, g,7,...) ENP(X) & Loy = 5Ly = L(F5, 159, 15m,...)
Since [$y, = 5,15, under the gauge transformations

oYY = Loy o Ly VY €.2(G).

/£COV: em[z]:/ »Cinv-
X X

NB: Lcov is local, while Liy is generally nonlocal; they are related by a nonlocal field
redefinition.

A gauge invariant action:
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Minimal Coupling to Matter Fields

Let ® be a complex field and £(®P,0,®,...) be a U(1) invariant Lagrangian.
dFt(X)=0 =  FY(X)=do(%)
Fr(EY) =FYE) =  0(2Y)=02)+da(%,Y) VY €. Z(6)
The minimal coupling is now introduced through the covariant derivative:
9P —  D,d=0,d+i0,(S)P.
Then the Lagrangian £(®, D, ®) is invariant under the gauge transformations
YooYy, & E¥e vy e 2(G).

In the commutative limit (7 — 0), this reproduces the minimal coupling and gauge
transformations of the ordinary electrodynamics. [ A.A.Sh., 2024 ]
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In semiclassical /low-energy limit, the noncommutativity of spacetime is controlled by an
integrable Poisson structure; the corresponding symplectic groupoid plays the role of the
phase space of a point (charged) particle.

The electromagnetic field is identified with the bisections of the symplectic groupoid;
the pull-backs of the symplectic 2-form by bisections give rise to the gauge-invariant and
gauge-covariant strength tensors.

The electromagnetic field admits a minimal coupling to complex matter fields with a good
commutative limit.

In general, the momentum space of a point particle and the target space of the
electromagnetic field is a nontrivial (curved) manifold rather than a linear space.
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