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Noncommutative Field Theory in Semiclassical Approximation
Noncommutative Field Theory proceeds from the fundamental hypothesis that spacetime
coordinates are noncommuting operators rather than real numbers,

[x̂µ, x̂ν ] = π̂µν ⇒ ∆xµ∆xν ≥ |πµν |

[W. Heisenberg, 1938; H. S. Snyder, 1947; . . . N. Seiberg & E. Witten, 1999; . . . ]

One can further assume these commutation relations to come from the quantization of classical
Poisson brackets on the spacetime manifold X:

{xµ, xν} = πµν(x)

Poisson Electrodynamics is the semiclassical/low-energy limit of U(1) Noncommutative
Gauge Theory where all commutators are replaced by Poisson brackets. The Lie algebra of
infinitesimal gauge transformations is postulated in the form

[δε1 , δε2 ] = δ{ε1,ε2} [V. G. Kupriyanov, 2021]
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Basic Logic Behind Poisson Electrodynamics

In ordinary electrodynamics, electromagnetic potentials

A = Aµ(x)dxµ ∈ Λ1(X)

are sections of the cotangent bundle T ∗X of the spacetime manifold X:

A : X → T ∗X .

On the other hand, T ∗X is the phase space of a point particle in X. The canonical symplectic
structure

ω = dpµ ∧ dxµ

allows one to define the strength tensor of the electromagnetic field as the pull-back

F = dA = A∗(ω) ∈ Λ2(X) .
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Phase Space Over a Non-commutative Spacetime

Q: What is the phase space of a point particle living in a noncommutative space-time (X,π)?

It is certainly not T ∗X and the naive Poisson brackets

{xµ, xµ} = πµν(x) , {pµ, xν} = δνµ , {pµ, pν} = 0

do not work! Mathematically, we need to construct a symplectic realization of (X,π),
i.e. a symplectic manifold (G, ω) together with a Poisson map p : G → X .

In general, the problem of symplectic realization may have many solutions.

A: (G, ω) is a symplectic groupoid integrating a given Poisson manifold (X,π).

NB: When a symplectic groupoid exists, it is essentially unique; the corresponding Poisson
structure is called integrable.
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Poisson Groupoids as Phase Spaces
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Symplectic groupoid (G, ω) ⇒ (X,π):

• (G, ω) is a symplectic manifold
(dimG = 2 dimX)

• There are two canonical projections
s, t : G → X (source and target):

{s∗f, s∗g}G = {f, g}X , {t∗f, t∗g}G = −{f, g}X

• The group B(G) of bisections Σ

• The subgroup L (G) ⊂ B(G) of Lagrangian
bisections (ω|Σ = 0)

The source map s : G → X defines a symplectic realization of the Poisson manifold (X,π).
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Example: Zero Poisson Brackets

An ordinary(=commutative) spacetime X corresponds to π = 0. In this case,

G = T ∗X , s = t = p : T ∗X → X ,

ω = dpµ ∧ dxµ .

The group of bisections B(G) = Λ1(X) is the abelian group with the multiplication law

A1 +A2 ∀A1, A2 ∈ Λ1(X) .

It acts trivially on X.

The subgroup of Lagrangian bisections L (G) ⊂ B(G) is given by closed 1-forms A = Aµdxµ:

L (G) 3 A ⇔ ω|pµ=Aµ = 0 ⇔ dA = 0 .
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Example: Linear Poisson Brackets

{xµ, xν} = fµνλ xλ

• f ijk are structure constants of a Lie algebra g, so that x ∈ g∗.

• G = T ∗G ' G× g∗, where G is a Lie group integrating g.

• The source and target maps: s(g, x) = x , t(g, x) = Ad∗gx .

• ω is the canonical symplectic structure on T ∗G,

ω = dθ , θ = 〈x, g−1dg〉 .

• Bisections: Σs : g∗ → G , Σt : g∗ → G.

NB: If G is a compact Lie group, then so is the momentum space of the particle !
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Postulates of Poisson Electrodynamics

P1: The physical spacetime is a smooth manifold X endowed with a Poisson bivector π.

P2: The phase space of a point charged particle on X is a symplectic groupoid G ⇒ X
integrating the Poisson manifold (X,π).

P3: The configuration space of the electromagnetic field is identified with the group of
bisections B(G) of the symplectic groupoid G ⇒ X.

P4: The gauge group of the electromagnetic field is given by the subgroup of Lagrangian
bisections L (G) ⊂ B(G); the group L (G) acts on B(G) by right translations.

[V. G. Kupriyanov, A.A.Sh, and R. J. Szabo, 2024]
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Strength Tensors
The gauge invariant and gauge covariant strength tensors:

F t(Σ) = Σ∗tω , F s(Σ) = Σ∗sω ∈ Λ2(X) .

Properties:
• dF s = dF t = 0,
• Non-abelian superposition:

F s(Σ1Σ2) = F s(Σ2) + l∗Σ2
F s(Σ1) , F t(Σ1Σ2) = F t(Σ1) + r∗Σ1

F t(Σ2) .

[The generalisation of the usual additivity: F (A1 +A2) = F (A1) + F (A2).]
• If Σ2 ∈ L (G), then F s(Σ2) = F t(Σ2) = 0 and

F t(Σ1Σ2) = F t(Σ1) , F s(Σ1Σ2) = l∗Σ2
F s(Σ1) .

• F s(Σ) = l∗ΣF
t(Σ) , F t(Σ) = r∗ΣF

s(Σ) .
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Action

Gauge invariant and gauge covariant Lagrangians:

Linv = L(F t, g, π, . . .) ∈ Λtop(X) ⇔ Lcov = l∗ΣLinv = L(F s, l∗Σg, l
∗
Σπ, . . .)

Since l∗ΣΣ′ = l∗Σ′ l∗Σ, under the gauge transformations

Σ→ ΣΣ′ ⇒ Lcov → l∗Σ′Lcov ∀Σ′ ∈ L (G) .

A gauge invariant action: ∫
X
Lcov = Sem[Σ] =

∫
X
Linv .

NB: Lcov is local, while Linv is generally nonlocal; they are related by a nonlocal field
redefinition.
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Minimal Coupling to Matter Fields
Let Φ be a complex field and L(Φ, ∂µΦ, . . .) be a U(1) invariant Lagrangian.

dF t(Σ) = 0 ⇒ F t(Σ) = dθ(Σ)

F t(ΣΣ′) = F t(Σ) ⇒ θ(ΣΣ′) = θ(Σ) + dα(Σ,Σ′) ∀Σ′ ∈ L (G)

The minimal coupling is now introduced through the covariant derivative:

∂µΦ → DµΦ = ∂µΦ + iθµ(Σ)Φ .

Then the Lagrangian L(Φ, DµΦ) is invariant under the gauge transformations

Σ→ ΣΣ′ , Φ→ e−iα(Σ,Σ′)Φ ∀Σ′ ∈ L (G) .

In the commutative limit (π → 0), this reproduces the minimal coupling and gauge
transformations of the ordinary electrodynamics. [ A.A.Sh., 2024 ]
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Summary

• In semiclassical/low-energy limit, the noncommutativity of spacetime is controlled by an
integrable Poisson structure; the corresponding symplectic groupoid plays the role of the
phase space of a point (charged) particle.

• The electromagnetic field is identified with the bisections of the symplectic groupoid;
the pull-backs of the symplectic 2-form by bisections give rise to the gauge-invariant and
gauge-covariant strength tensors.

• The electromagnetic field admits a minimal coupling to complex matter fields with a good
commutative limit.

• In general, the momentum space of a point particle and the target space of the
electromagnetic field is a nontrivial (curved) manifold rather than a linear space.
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