
Hamiltonian formalism for hard and
soft excitations in a plasma with

non-Abelian interaction

Yu.A. Markov

Matrosov Institute for System Dynamics and Control Theory, Siberian
Branch, Russian Academy of Sciences, Irkutsk

with M.A. Markova and N.Yu. Markov

Efim Fradkin Centennial Conference

(Lebedev Institute, Moscow, September 2-6 2024)



Introduction

At present, a certain interest is shown in the construction of kinetic description
of the new fundamental state of matter: the quark–gluon plasma that consists of
asymptotically free quarks, antiquarks, and gluons, which is probably formed
during ultrarelativistic heavy ion collisions in the running experimental programs
at relativistic heavy ion colliders in USA (RHIC) and in Europe (LHC, CERN).
Besides ultrarelativistic hot and dense matter requires its understanding in
many problems related to cosmology of the early Universe and astrophysics
of compact stars.

In this work, we enlarge the Hamiltonian analysis of dynamics of fermion
and boson excitations in the hot QCD-medium at the soft momentum scale
carried out in Yu.A. Markov et al. (JETP (2020); Int. Mod. Phys. A (2023)) to
the hard sector of the quark-gluon plasma excitations (Yu.A. Markov et al.Nucl.
Phys. A (2024)). Here, we focus our research on the study of the scattering pro-
cesses of soft boson plasma waves off a hard particle within the real time
formalism based on kinetic equations for soft modes.

For this purpose the classical Hamiltonian formalism for systems with distributed
parameters is used. It has been systematically developed by V.E. Zakharov
(Radiophys. Quantum Electron. (1974)) and presented in detail with many
examples of concrete physical systems in comprehensive reviews and in the
monograph.
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1. Lie-Poisson bracket

Let us consider the gauge field potential Aa
µ(x) in the form of the decompo-

sition into plane waves

Aa
µ(x) =

∫
dk

(
Zl(k)

2ω l
k

)1/2{
ϵ lµ(k)a

a
k e

−iω l
k t+ik·x + ϵ∗ lµ (k) a∗ak eiω

l
k t−ik·x

}
,

where ϵ lµ(k) is the polarization vector of a longitudinal mode (k is the wave
vector) andω l

k is the dispersion relation of the longitudinal mode.We consider
the amplitude a a

k for longitudinal excitations as ordinary (complex) random
function. The expectation value of the product of two bosonic amplitudes is〈

a∗ak a a′
k′
〉
= N aa′

k δ(k− k′), (1)

whereN aa′

k is the number density of the longitudinal plasma waves. The color
indices a, b, c, . . . run through values 1, 2, . . . , N 2

c −1 for colorSU(Nc) group.
For the case of continuous media, we take the following expression as the defini-
tion of the Lie-Poisson bracket: (N. Linden et al. (1995)):{

F, G
}
≡
∫

dk′
{

δF

δa c
k′

δG

δa∗ck′
− δF

δa∗ck′

δG

δa c
k′

}
+ i

∂F

∂Q a

∂G

∂Qb
f abcQc.

Here, Qa = Qa(t) is the color charge of a hard test particle.



Interaction Hamiltonian of plasmons and a hard particle

The first term is the standard canonical bracket. In the second term f abc are
antisymmetric structure constants of the Lie algebra su(Nc). The Hamilton
equations for the functions a a

k, a
∗a
k and Qa have, correspondingly, the form

∂a a
k

∂ t
= −i

{
a a
k, H

}
≡ −i

δH

δa∗ak
,

∂a∗ak
∂t

= −i
{
a∗ak , H

}
≡ i

δH

δa a
k

, (2)

dQa

dt
= −i {Qa, H} =

∂H

∂Qb
f abcQc, Qa|t=t0 = Qa

0 . (3)

Here, the functionH = H(0) +Hint represents a Hamiltonian for the system of
plasmons and a hard test particle, H(0) is the Hamiltonian of noninteracting
plasmons:

H(0) =

∫
dk (ω l

k − v · k) a∗ak a a
k,

Hint is the interaction Hamiltonian of plasmons and the hard color-charged
particle. In the approximation of small amplitudes the interaction Hamiltonian
Hint can be presented in the form of a formal integro-power series in the
bosonic functions aak and a∗ak and in the color charge Qa:



Interaction Hamiltonian of plasmons and a hard particle

Hint = H(3) +H(4) + . . . ,

where the third-order interaction Hamiltonian has the following structure:

H(3) =

∫
dk
[
ϕk a

a
k Qa + ϕ∗

k a
∗a
k Qa

]
(4)

+

∫
dk dk1dk2

{
V a a1 a2

k,k1,k2
a∗ak a a1

k1
a a2

k2
+ V ∗ a a1 a2

k,k1,k2
a a
k a∗ a1

k1
a∗ a2

k2

}
δ(k− k1 − k2)

+
1

3

∫
dk dk1dk2

{
U a a1 a2

k,k1,k2
aak a

a1

k1
aa2

k2
+ U ∗ a a1 a2

k,k1,k2
a∗ a
k a∗ a1

k1
a∗ a2

k2

}
δ(k+ k1 + k2)

and, correspondingly, the fourth-order interaction Hamiltonian is

H(4)=
1

2

∫
dk dk1

{
T

∗ (1) a a1 a2

k,k1
a a
k a

a1

k1
Q a2 + T

(1) a a1 a2

k,k1
a∗ a
k a∗ a1

k1
Q a2

}
+

+ i

∫
dk dk1 T

(2) a a1 a2

k,k1
a ∗ a
k a a1

k1
Q a2 . (5)

We assign to the color charge Qa a degree of nonlinearity of two. The vertex functions
ϕk,V

a a1 a2

k,k1,k2
,U a a1 a2

k,k1,k2
determine the interaction of a classical color-charged particle

with an external gauge field Aa
µ(x) and the processes of three-plasmon interaction.



2. Canonical transformation

Let us consider the transformation from the normal boson variable aak and
classical color charge Qa to the new field variable c ak and color charge Qa:

aak = a a
k(c

a
k, c

∗a
k , Qa), Q a = Q a(c ak, c

∗a
k , Qa). (6)

We will demand that the Hamilton equations in terms of the new variables
have the form (2) and (3) with the same Hamiltonian H. Straightforward
but rather cumbersome calculations result in two systems of integral relations.
The first of them has the following form:∫

dk′
{
δa a

k

δc ck′

δa∗bk′′

δc∗ck′
−

δa a
k

δc∗ck′

δa∗bk′′

δc ck′

}
+ i

∂a a
k

∂Qc

∂a∗bk′′

∂Qc′
f cc′dQd= δabδ(k− k ′′),

∫
dk′
{
δa a

k

δc ck′

δa b
k′′

δc∗ck′
−

δa a
k

δc∗ck′

δa b
k′′

δc ck′

}
+ i

∂a a
k

∂Qc

∂a b
k′′

∂Qc′
f cc′dQd = 0, (7)

∫
dk′
{
δa a

k

δc ck′

δQ b

δc∗ck′
−

δa a
k

δc∗ck′

δQ b

δc ck′

}
+ i

∂a a
k

∂Qc

∂Qb

∂Qc′
f cc′dQd = 0.

The second system is written in a similar way.



Canonical transformation

Let us present the canonical transformations (6) in the form of integro-power series
in normal variable c a

k and in color charge Q a. In this case the first transformation
in (6) up to the terms of the sixth order in c a

k and Qa has the following form:

aak = cak + FkQa +

∫
dk1

[
Ṽ

(1) a a1 a2

k,k1
c∗ a1

k1
Qa2 + Ṽ

(2) a a1 a2

k,k1
ca1

k1
Qa2

]
+ (8)

+

∫
dk1dk2

[
V

(1) a a1 a2

k,k1,k2
ca1

k1
ca2

k2
+ V

(2) a a1 a2

k,k1,k2
c∗ a1

k1
c a2

k2
+ V

(3) a a1 a2

k,k1,k2
c∗ a1

k1
c∗ a2

k2

]
+∫

dk1dk2

[
W

(1)aa1a2a3

k,k1,k2
ca1

k1
ca2

k2
Qa3+W

(2)aa1a2a3

k,k1,k2
c∗a1

k1
ca2

k2
Qa3+W

(3)aa1a2a3

k,k1,k2
c∗a1

k1
c∗a2

k2
Qa3

]
.

Similarly, the most common power-series expansion for the transformation (6) up
to the terms of the sixth order is

Qa = Qa +

∫
dk1

[
M a a1 a2

k1
ca1

k1
Qa2 + M ∗ a a1 a2

k1
c∗ a1

k1
Qa2

]
(9)

+

∫
dk1dk2

[
M

(1) a a1 a2 a3

k1,k2
ca1

k1
ca2

k2
Qa3 + M

(2) a a1 a2 a3

k1,k2
c∗ a1

k1
ca2

k2
Qa3

+M
∗ (1) a a1 a2 a3

k1,k2
c∗ a1

k1
c∗ a2

k2
Qa3

]
+ . . . .

Substituting the expansions (8) and (9) into a system of the canonicity conditions (7),
we obtain rather nontrivial integral relations connecting various coefficient functions
among themselves.



3. Eliminating “nonessential” Hamiltonian H(3)

Here, we have provided only algebraic relations for the lowest second-order coefficient
functions:

V
(2) a a1 a2

k,k1,k2
= −2V

∗(1) a2 a1 a
k2,k1,k

, V
(3) a a1 a2

k,k1,k2
= V

(3) a1 a a2

k1,k,k2
, (10)

M a a1 a2

k + iF ∗
k f

a a1 a2 = 0, (11)

Ṽ
(1) a a1 a2

k,k1
− Ṽ

(1) a1 a a2

k1,k
− iFkFk1

f a a1 a2 = 0, (12)

Ṽ
(2) a a1 a2

k,k1
+ Ṽ

∗(2) a1 a a2

k1,k
+ iFkF

∗
k1
f a a1 a2 = 0. (13)

The next step in constructing the effective theory is the procedure of eliminating
the third-order interaction HamiltonianH(3), Eq. (4), upon switching from the original
bosonic function aa

k and the color charge Qa to the new function cak and color charge
Qa as a result of the canonical transformations.

To eliminate the third-order interaction Hamiltonian H(3), we substitute the expan-
sions (8) and (9) into the free-field Hamiltonian H(0) and keep only the terms that
have a degree of nonlinearity of two or three in the new variables c a

k andQa. Then
in the third-order Hamiltonian H(3), Eq. (4), we perform the simple replacement of
variables: aak→c a

k and Qa→Qa. We add the expression thus obtained to the expres-
sion that follows from the free-field Hamiltonian H(0), and collect similar terms.



Eliminating “nonessential” Hamiltonian H(3)

From the requirement of excluding third-order terms in the Hamiltonian H(3),
Eq. (4) containing the vertex functions ϕk and ϕ∗

k, we obtain an explicit form of
the coefficient function Fk in the canonical transformation of the normal variable
a a
k , Eq. (8), in terms of the vertex function ϕk:

Fk = − ϕ∗
k

ω l
k − v · k

. (14)

The relation (14) has a meaning due to the absence of linear Landau damping.
Making use of (14), from (11) we immediately find an explicit form of the coefficient
function M a a1 a2

k entering into the canonical transformation of color charge Qa:

M a a1 a2

k = if a a1 a2
ϕk

ω l
k − v · k

. (15)

Furthermore, the requirement to exclude third-order terms in the HamiltonianH(3),
Eq. (4), containing the vertex functionsV a a1 a2

k,k1,k2
and U a a1 a2

k,k1,k2
, leads to the already

known expressions (Yu.Markov et al. (2020)) for the coefficient functionsV (1,3) a a1 a2

k,k1,k2

in the canonical transformation for aak:

V
(1) a a1 a2

k,k1,k2
= −

V a a1 a2

k,k1,k2

ω l
k − ω l

k1
− ω l

k2

δ(k− k1 − k2),

V
(3) a a1 a2

k,k1,k2
= −

U ∗ a a1 a2

k,k1,k2

ω l
k + ω l

k1
+ ω l

k2

δ(k+ k1 + k2).

(16)



4. Effective fourth-order Hamiltonian H(4)

After eliminating the Hamiltonian H(3) we obtain the effective fourth-order
Hamiltonian H(4) describing the elastic scattering process of plasmon off a hard
color-charged particle:

H(4) = i

∫
dk1dk2 T

a a1a2

k1,k2
c∗a1

k1
ca2

k2
Q a. (17)

Here the complete effective amplitude T a a1a2

k1,k2
can be represented as the sum of

two contributions

T a a1a2

k1,k2
= −i

[
ω l

k1
− ω l

k2
− v · (k1 − k2)

]
Ṽ

(2) a1a2 a
k1,k2

+ T̃
(2) a1 a2 a
k1,k2

, (18)

where, in turn, the effective amplitude T̃
(2) a1 a2 a
k1,k2

has the following structure:

T̃
(2) a1 a2 a
k1,k2

= T
(2)a a1 a2

k1,k2
+ (19)

+ f a1 a2 a

{
ϕ∗

k1
ϕk2

ω l
k2

− v · k2
+2i

( Vk1,k2,k1−k2
ϕ∗

k1−k2

ω l
k1−k2

− v · (k1 − k2)
−

V ∗
k2,k1,k2−k1

ϕk2−k1

ω l
k2−k1

− v · (k2 − k1)

)}
.

The first term on the right-hand side of (18) has the resonance factor

∆ωk1,k2
≡ ω l

k1
− ω l

k2
− v · (k1 − k2),

which in fact represents a consequence of the momentum and energy conservation
laws in the scattering process under investigation. In the case of ∆ωk1,k2

̸= 0 the
problem of determining the coefficient function Ṽ

(2) a1 a2 a
k1,k2

arises.



Effective fourth-order Hamiltonian H(4)

Figure 1 gives the diagrammatic interpretation of different terms in curly brackets
in the effective amplitude (19).

G G G G

1
k

G G

1k1
k

2k 2k
2k

Рис.: The effective amplitude T̃
(2)a1a2 a

k1, k2
for the elastic scattering process of plasmon off a hard color

particle. The blob stands for HTL resummation and the double line denotes the hard particle

The first two graphs represent the Compton scattering of soft boson excitations off
a hard test particle induced by the first term in curly brackets of the expression (19).
The incoming and outgoing wave lines in fig. 1 correspond to the normal variables
ca1

k1
and c∗a2

k2
, respectively, and the horizontal double line between two interaction

vertices corresponds to the “propagator” of the hard particle

1/(ω l
k1

− v · k1).

The interaction vertices correspond to the functions ϕ∗
k1

or ϕk2
. The remaining

graph is connected with the interaction of hard particle with plasmons through the
three-plasmon vertex function V a a1 a2

k,k1,k2
with intermediate “virtual” oscillation to

which the factor 1/(ω l
k1−k2

− v · (k1 − k2)) in (19) corresponds.



Effective fourth-order Hamiltonian H(4)

Note that this factor can also be written in a slightly different form
1

ω l
k1−k2

− ω l
k1

+ ω l
k2

,

if the resonance frequency difference ∆ωk1,k2
is exactly zero. The last expression

represents (up to a multiplier) an approximation of the effective (retarded) gluon
propagator ∗D̃µν(k) at the plasmon pole ω ∼ ω l

k.
Finally, the first term T

(2)a a1 a2

k1,k2
on the right-hand side of (19) must be associated

with the process of direct interaction of two plasmons with a hard particle, as shown
in fig. 2.

1 2

G

kk

G

Рис.: Direct interaction of two plasmons with a hard particle

In the particular physical system under consideration, such interaction is forbidden,
and therefore we should assume

T
(2)a a1 a2

k1,k2
≡ 0.



5. The coefficient function Ṽ
(2) a1a2 a
k1,k2

The coefficient function Ṽ
(2) a1a2 a
k1,k2

must satisfy the canonicity condition (13):

Ṽ
(2) a a1a2
k1,k2

+ Ṽ
∗(2) a a2 a1
k2,k1

= −if a a1a2Fk1
F ∗

k2

or, if we factorize color andmomentum dependence Ṽ (2)aa1a2
k1,k2

=f aa1a2 Ṽ
(2)
k1,k2

:

Ṽ
(2)
k1,k2

− Ṽ
∗(2)
k2,k1

= −iFk1
F ∗

k2
. (20)

The last relation can be considered as a functional equation for the coefficient
function Ṽ (2)

k1,k2
. We can find its solution bywriting down the general solution

of the associated homogeneous equation and the particular solution of the
nonhomogeneous one.
Searching for a partial solution in the formαFk1

F ∗
k2

, where α is some complex
number and passing then from the coefficient functionFk to the vertex function
ϕk by the rule (14), we get from (20)(

Ṽ
(2)
k1,k2

)
inhom

=

(
Reα− i

2

)
ϕ∗

k1
ϕk2(

ω l
k1

− v · k1

)(
ω l
k2

− v · k2

) ,
where Reα is an arbitrary numerical parameter.



The coefficient function Ṽ
(2) a1a2 a
k1,k2

We take the general solution of the homogeneous equation in the following form:(
Ṽ

(2)
k1,k2

)
hom

= Λ
(2)
k1,k2

+
Vk1,k2,k1−k2

ϕ∗
k1−k2(

ω l
k1

− ω l
k2

− ω l
k1−k2

)(
ω l

k1−k2
− v · (k1 − k2)

)
+

V ∗
k2,k1,k2−k1

ϕk2−k1(
ω l

k2
− ω l

k1
− ω l

k2−k1

)(
ω l

k2−k1
− v · (k2 − k1)

) ,
whereΛ(2)

k1,k2
is an arbitrary function satisfying the condition: Λ(2)

k1,k2
= Λ

∗(2)
k2,k1

.

Summing the partial and general solutions and assuming for the sake of definiteness

Reα ≡ 0, Λ
(2)
k1,k2

≡ 0,

we obtain the required function:

Ṽ
(2)
k1,k2

= − i

2

ϕ∗
k1

ϕk2(
ω l

k1
− v · k1

)(
ω l

k2
− v · k2

) + (21)

+
Vk1,k2,k1−k2

ϕ∗
k1−k2(

ω l
k1

− ω l
k2

− ω l
k1−k2

)(
ω l

k1−k2
− v · (k1 − k2)

) +
+

V ∗
k2,k1,k2−k1

ϕk2−k1(
ω l

k2
− ω l

k1
− ω l

k2−k1

)(
ω l

k2−k1
− v · (k2 − k1)

) .



6. The complete effective amplitude T
(2)a a1a2
k1,k2

We need to consider in more detail the practical implication of the coefficient
function Ṽ (2) for the Hamilton formalism under consideration when the
resonance frequency difference

∆ωk1,k2 ≡ ω l
k1

− ω l
k2

− v · (k1 − k2),

is different from zero. We recall for this purpose that the function T
(2) a a1a2
k,k1

in initial fourth-order interaction HamiltonianH(4), satisfies the requirement of
reality of this Hamiltonian

T
(2) a a1a2
k,k1

= −T
∗ (2) a1a a2
k1,k

. (22)

Let us now consider the effective amplitude T̃
(2) a1a2 a
k1,k2

, which is defined by
the expression (19). If one does not use the resonance condition

ω l
k1

− ω l
k2

− v · (k1 − k2) = 0, (23)

then it is not difficult to verify that in contrast to (22), we have

T̃
(2) a1a2 a
k1,k2

̸= − T̃
∗ (2) a2 a1a
k2,k1

.



The complete effective amplitude T
(2)a a1a2
k1,k2

Substituting the functions Ṽ
(2)
k1,k2

and T̃
(2)
k1,k2

, Eq. (21) and (19), into (18) and
performing simple algebraic transformations, we define an explicit form of the
complete effective amplitude T

(2)a a1 a2

k1,k2
= f a a1a2 T

(2)
k1,k2

, where

T
(2)
k1,k2

= T
(2)
k1,k2

+
1

2

(
1

ω l
k1

− v · k1
+

1

ω l
k2

− v · k2

)
ϕ∗

k1
ϕk2

(24)

+ i

[(
1

ω l
k1−k2

− v · (k1 − k2)
+

1

ω l
k1−k2

− ω l
k1

+ ω l
k2

)
Vk1,k2,k1−k2

ϕ∗
k1−k2

−

(
1

ω l
k2−k1

− v · (k2 − k1)
+

1

ω l
k2−k1

− ω l
k2

+ ω l
k1

)
V ∗

k2,k1,k2−k1
ϕk2−k1

]
.

The presented form of the complete effective amplitudeT (2) (24) makes the validity of
the requirement of reality of the Hamiltonian H(4) practically obvious

T
(2)a a1 a2

k1,k2
= −T

∗ (2)a a2 a1

k2,k1
.

Thus, the role of the coefficient function Ṽ (2) a1 a2 a
k1,k2

is reduced to the total symmetriza-

tion of the effective amplitude T̃ (2) a1 a2 a
k1,k2

. This involves the fulfillment of the necessary
symmetry condition without any use of the resonance condition (23).



7. Kinetic equation for soft gluon excitations

Now we turn to the construction of a kinetic equation describing the elastic
scattering process of a plasmon off a hard color particle. As the interaction
Hamiltonian we consider the effective Hamiltonian H(4) (17). The equations
of motion for the bosonic normal variables c a′

k′ and c∗ ak , and the color charge
Qa are defined by the corresponding Hamilton equations (2) and (3). For
soft Bose-excitations we find

∂c a′
k′

∂t
= −i

{
c a′
k′ ,H(0)+H(4)

}
= (25)

= −i
(
ω l
k′ − v · k′)c a′

k′ +

∫
dk1T

a′a1 d
k′,k1

ca1k1
Q d

and the corresponding equation for the conjugate boson normal amplitude c∗ ak .
For the classical color charge we get

dQ d

dt
= −i

{
Q d ,H(0)+H(4)

}
= (26)

=
∂
(
H(0)+H(4)

)
∂Qd′ f dd′eQe = if dd′e

∫
dk1dk2 T

a1a2 d′

k1,k2
c∗ a1k1

ca2k2
Q e,

where the free Hamiltonian H(0) in the term of new variables is of the form

H(0) =

∫
dk (ω l

k − v · k) c∗ak c ak.



Kinetic equation for soft gluon excitations

Kinetic equation for the plasmon number densityN aa′

k are defined by employing
the Hamilton equations (25) and (26), and the definition (1):

∂N aa′

k

∂ t
= −i

{
T k,k

(
Nk T

e
)aa′

− T ∗
k,k

(
T eNk

)aa′}〈
Qe
〉
− (27)

−
∫
dk1

∣∣Tk,k1

∣∣2 ×{
1

∆ωk,k1
+ i0

((
Nk T d ′

Nk1
T d

)aa′
f d d ′e〈Qe

〉
+i

[(
Nk T eT d

)aa′
−
(
T eNk1

T d
)aa′]〈

Qd
〉〈

Qe
〉)

−
1

∆ωk,k1
− i0

((
T d ′

Nk1
T dNk

)aa′
f d d ′e〈Qe

〉
+i

[(
T eT dNk

)aa′
−
(
T eNk1

T d
)aa′]〈

Qd
〉〈

Qe
〉)}

.

Let us consider the following color decomposition of thematrix functionN aa′

k :

N aa′

k = δ aa′N l
k +

(
T c
)aa′〈Qc

〉
W l

k. (28)

We define the kinetic equations for the colorless and color parts of the plasmon
number density, i.e. for the scalar functions N l

k and W l
k.

Using the color expansion (28) and the formulae for the traces of the product of
two and three color matricesT a in the adjoint representation of the Lie algebra
su(Nc) (H. Haber (2021)), we find first moment about color for the equation (27):



Kinetic equation for soft gluon excitations

dA
∂N l

k

∂ t
= 2Nc q2(t)

(
ImTk,k

)
W l

k (29)

−Ncq2(t)

∫
dk1

∣∣Tk,k1

∣∣2{(N l
k −N l

k1

)
− 1

2
Nc

(
W l

kN
l
k1

−N l
kW

l
k1

)}
× (2π) δ(ω l

k − ω l
k1
− v · (k− k1)).

Here we have introduced the notation for a colorless quadratic combination of the
averaged color charge q2(t) ≡

〈
Qe
〉〈
Qe
〉
. The coefficient dA ≡ N 2

c − 1 on the
left-hand side of (29) is an invariant for the group SU(Nc).
Let us return to the matrix kinetic equation (27). We now contract the left- and

right-hand sides of this equation with the color matrix (T s)a
′a. After somewhat

cumbersome calculations of the traces of the product of generators in the adjoint
representation up to fifth order the kinetic equation for W l

k takes the form

Nc

∂
(〈
Qs
〉
W l

k

)
∂ t

= 2N
(
ImTk,k

)
N l

k

〈
Qs
〉

(30)

−
∫
dk1

∣∣Tk,k1

∣∣2{2δsd δce + 1

4
Nc d

sdλdceλ
}(

W l
k −W l

k1

)〈
Qc
〉〈

Qd
〉〈

Qe
〉

× (2π)δ(ω l
k − ω l

k1
− v · (k− k1))

+
1

2
N 2

c

∫
dk1

∣∣Tk,k1

∣∣2 N l
kN

l
k1

〈
Qs
〉
(2π) δ(ω l

k − ω l
k1

− v · (k− k1)),

where dabc is totally symmetric structure constants of the Lie algebra su(Nc).



Equation for the expected value of color charge
〈
Qa
〉

The kinetic equations obtained (29) and (30) contain the averaged color charge〈
Qa
〉

of a hard particle, which itself is an unknown function of time. To determine
the equation to which a given charge obeys, the first step is to average the original
equation (26) and then to use approximate expression for the fourth-order correlation
function. As a result we obtain

d
〈
Qd
〉

dt
=

1

2
A(t)

〈
Qd
〉
,
〈
Qd
〉
|t=t0 = Qd

0, (31)

where
A(t) ≡ N 2

c

∫
dk1dk2

∣∣Tk1,k2

∣∣2N l
k1
N l

k2
(2π)δ(ω l

k1
− ω l

k2
− v · (k1 − k2)) (32)

andQd
0 is some fixed (nonrandom) vector in the internal color space. We are interested

in the time dependence of the colorless quadratic combination

q2(t) =
〈
Qe
〉〈
Qe
〉

as well as the colorless combination of the fourth order

q4(t) = qa
2(t)q

a
2(t), (33)

where
qa
2(t) ≡ dabc⟨Qb

〉
⟨Qc

〉
.



Equation for the expected value of color charge
〈
Qa
〉

From (31), we immediately find the desired time dependence of these combinations
as nonlinear functionals of the colorless part N l

k of the plasmon number density

q2(t) = q2(t0) exp

{∫ t

t0

A(τ)dτ

}
, q4(t) = q4(t0) exp

{
2

∫ t

t0

A(τ)dτ

}
. (34)

Thus, the square of the averaged color charge q2(t) of a hard particle is not conserved
in the interaction with the random soft bosonic excitations of a hot gluon plasma.
The solutions (34) allow us to close the kinetic equations (29) and (30) and thereby,

within the approximation employed in this work, to obtain a complete self-consistent
description of the dynamics of soft gluon excitations in the presence of an external
high-energy color-charged particle in the medium.
For the special case Nc = 2, when dabc ≡ 0 and, as a consequence q4(t0) ≡ 0, we
have

q4(t) ≡ 0.

In another, more nontrivial special case Nc = 3, by virtue of the definition (33) and
the property

d abed cde + d aced bde + d aded bce =
1

3

(
δabδcd + δacδbd + δadδbc

)
,

we find

q4(t0) = dabcdab′c′
⟨Qb

0

〉
⟨Qc

0

〉
⟨Qb′

0

〉
⟨Qc′

0

〉
=

1

3

(
⟨Qa

0

〉
⟨Qa

0

〉)2 ≡ 1

3
(q2(t0))

2.



5. System of kinetic equations for soft gluon excitations

We write out once more the kinetic equations for the scalar plasmon number
densities N l

k and W l
k obtained above

dA
∂N l

k

∂ t
= 2q2(t)Nc

(
ImTk,k

)
W l

k − q2(t)Nc

∫
dk1

∣∣Tk,k1

∣∣2 × (35)

×
{(

N l
k −N l

k1

)
− 1

2
Nc

(
W l

kN
l
k1

−N l
kW

l
k1

)}
(2π) δ(ω l

k − ω l
k1

− v · (k− k1)),

∂W l
k

∂ t
= − 1

2
A(t)W l

k + 2
(
ImTk,k

)
N l

k (36)

−
∫

dk1

∣∣Tk,k1

∣∣2 {ρq2(t)(W l
k−W l

k1

)
−1

2
NcN

l
kN

l
k1

}
(2π) δ(ωl

k−ωl
k1
−v·(k−k1)),

where Tk,k1 is amplitude of elastic scattering of plasmon off a hard color-charged
particle; the functions q2(t) and A(t) are defined, respectively, by the expressions

q2(t) ≡
〈
Qa
〉〈
Qa
〉
,

A(t) ≡ N 2
c

∫
dk1dk2

∣∣Tk1,k2

∣∣2N l
k1
N l

k2
(2π)δ(ω l

k − ω l
k1

− v · (k− k1)), (37)

ρ ≡ 2

Nc
+

1

4

q4(t)

(q2(t))2
=

2

Nc
+

1

4

q4(t0)

(q2(t0))2
.

The coefficient ρ in the last expression is equal to 1 for the colorSU(2c) group and 3/4
for the color SU(3c) group.



6. Interaction of infinitely narrow packets

To get some understanding of the behavior of the solution of the system of
kinetic equations (35) and (36), we consider themodel problem of the interaction
of two infinitely narrow packets with typical wavevectorsk0 иk′

0. Let us introdu-
ce the scalar plasmon number densities N l

k and W l
k as follows

N l
k(t) = N1(t)δ(k− k0) +N2(t)δ(k− k′

0),

W l
k(t) = W1(t)δ(k− k0)+W2(t)δ(k− k′

0),
(38)

at that k0 ̸=k′
0. Let us substitute (38) into the left- and right-hand sides of

equations (35) and (36). As a result, we obtain a system of four nonlinear
ordinary differential equations of the first order

dN1(t)

dt
= A13W1 −

Nc

dA
q2(t)B

(
N1W2 −N2W1

)
,

dN2(t)

dt
= A24W2 +

Nc

dA
q2(t)B

(
N1W2 −N2W1

)
,

dW1(t)

dt
= A31N1 −

1

2
A(t)W1 +BN1N2,

dW2(t)

dt
= A42N2 −

1

2
A(t)W2 +BN1N2.

(39)



Interaction of infinitely narrow packets
Nonzero “matrix elements” Aij , i, j=1, . . . , 4 are defined by the following expressions:

A31 = 2
(
ImTk0,k0

)
, A13 =

Nc

dA
q2(t)A31,

A42 = 2
(
ImTk′

0,k
′
0

)
, A24 =

Nc

dA
q2(t)A42,

and the coefficient B has the form
B = (1/2)Nc q2(t)

∣∣Tk0,k
′
0

∣∣2 (2π) δ(ω l
k0

− ω l
k′
0
− v · (k0 − k′

0)).

This coefficient is, generally speaking, a generalized function.
Let us simplify the resulting system as much as possible. The matrix elements Aij

in front of the linear terms on the right-hand sides of (39) are proportional to the
imaginary parts ImTk0,k0(v) and ImTk′

0,k
′
0
(v) These factors are actually related

to the collisionless (Landau) damping of soft gluon oscillations and thus must contain
the Dirac delta functionwhich reflects the corresponding conservation laws for energy
and momentum:

ImTk0,k0
(v) ∼

∫
dΩv′

4π
wv′(v;k0)(2π)δ(ω

l
k0

− v′ · k0),

where wv′(v;k0) is the probability for the Landau damping process and dΩv′ is a
differential solid angle. An explicit form of this probability can be obtained by using
the expression for the scattering amplitude found in the workYu. Markov et al. (2024).



Interaction of infinitely narrow packets

However, as is well known, the linear Landau damping is kinematically forbidden in
hot gluon plasma and therefore, these matrix elements can be set to zero, i.e.,

A13 = A24 = A31 = A42 = 0.

Next, we consider the terms in the last two equations in (39) containing the function
A(t). By virtue of the definition (37) this function is quadratic in the colorless part of
plasmon number density, and thus, the termsA(t)W1 and A(t)W2 in (39) are of the
third order. In constructing the kinetic equations (35) and (36), we limited ourselves
to linear and quadratic contributions of the plasmon number density. For this reason,
within the accepted accuracy, in the last two equations in (39) one should drop the
contributions with the function A(t), and in the first two equations, due to the fact
that the function q2(t) depends exponentially on the A(t), the function q2(t) should
be assumed equal to its initial value, i.e.

q2(t) ≃ q2(t0) ≡ q02.

Taking all the above into account, the system of four equations (39) can be reduced
to a system of two equations

dN1(t)

dt
= βB

[
N1(C2 −W1) +W1(C1 −N1)

]
,

dW1(t)

dt
= BN1(C1 −N1),

(40)

where for the sake of brevity, we have designated β ≡ Ncq
0
2/dA.



Interaction of infinitely narrow packets

The functions N2(t) and W2(t) are defined from relations of the form

N1(t) +N2(t) = C1, W1(t)−W2(t) = C2,

where C1 and C2 are some constants. Obviously, the system (40) has two statio-
nary points, one of which is trivial:N1 = W1 = 0, and the second one is defined
as N1 = C1, W1 = C2.
It will be shown below, that at a certain relation between the constants C1 and
C2 we can obtain the exact solution of the system (40). For this purpose, the
first step, due to the autonomy of the right-hand sides, is to reduce this system
to a single equation

dN1

dW1
= β

(
C2 −W1

C1 −N1
+

W1

N1

)
,

or, in a slightly different form, which defines W1 as a function of N1[
(2N1 − C1)W1 − C2N1

] dW1

dN1
=

1

β
(N 2

1 − C1N1). (41)



7. Constructing the exact solution of the equation (41) and the system (40)

Let us rewrite the system (40) and equation (41) in a slightly different form, introdu-
cing the notations generally accepted in the theory of differential equations. We set
y ≡ W1, x ≡ N1, then instead of the original system (40), we have

dy(t)

dt
= x(C1 − x),

dx(t)

dt
= β

[
x(C2 − y) + y(C1 − x)

]
,

(42)

and instead of (41), in turn, we can write down[
(2x− C1)y − C2x

] dy
dx

=
1

β
x(x− C1), (43)

or in more standard notations (A.D. Polyanin and V.F. Zaitsev (1995)):[
g1(x)y + g0(x)

] dy
dx

= f0(x), (44)

where

g0(x) ≡ −C2x, g1(x) ≡ 2x− C1, f0(x) ≡
1

β
x(x− C1).

In the system (42) we eliminated the parameter B, formally redefining the time
t → t/B.



Constructing the exact solution of the system

Equation (44) belongs to the class of the Abel equations of the second kind.
The first step is to reduce it to the “normal” form. We perform replacement
of the unknown function

w = y +
g0(x)

g1(x)
.

This transformation reduces the original equation (43) to the form:

w
dw

dx
= F1(x)w + F0(x), (45)

where

F1(x) =
d

dx

(
g0(x)

g1(x)

)
=

C1C2
(2x− C1)2

, F0(x) =
f0(x)

g1(x)
=

1

β

x(x− C1)
2x− C1

.

Next, the replacement of the argument of the function

ξ =

∫
F1(x)dx = −1

2

C1C2
2x− C1

, or x =
1

2
C1 −

1

4ξ
C1C2

allows us to bring equation (45) to the canonical form

w
dw

dξ
= w + F (ξ), where F (ξ) =

F0(x)

F1(x)
=

C 2
1

8β

(
1

ξ
− C 2

2

4ξ 3

)
. (46)



Constructing the exact solution of the system

For the equation (46), at a certain ratio between the parameters C1 and C2,
namely, for

C 2
2 = C 2

1 /2β

there is an exact solution in the parametric form (Eq. 7 in subsection 1.3.1.
of A.D. Polyanin and V.F. Zaitsev (1995)):

ξ =
a

τ

(
τ − ln |1 + τ | − C

)1/2
,

w = a

[
1 + τ

τ

(
τ − ln |1 + τ | − C

)1/2 − 1

2
τ
(
τ − ln |1 + τ | − C

)−1/2
]
,

where τ is a parameter,C is an arbitrary constant and a2 = C 2
1 /4β. Returning

to the original function y and to its argument x, we determine the exact solu-
tion for the equation (43):

x = x(τ, C) =
1

2
C1 −

1

4a
C1C2

τ

f(τ)
,

y = y(τ, C) = a

[
1 + τ

τ
f(τ)− 1

2

τ

f(τ)

]
+

C2x
2x− C1

.

(47)

Here, we introduce the notation f(τ) ≡
(
τ − ln |1 + τ | − C

)1/2.



Constructing the exact solution of the system

The solution of the initial dynamical system (42) is determined by the formulae

x = x(τ, C), y = y(τ, C),

t =
1

β

∫
ẋτ dτ

[C1 − 2x(τ, C)]y(τ, C) + C2x(τ, C)
+ C̃. (48)

Here ẋτ ≡ dx(τ, C)/dτ , and C̃ is another arbitrary constant. The latter relation
defines the implicit dependence of parameter τ on time t: τ = τ(t, C, C̃). Using
the formulae (47), we can find the dependence of x and y and, in this way,
the original functions N1 and W1 on time t.

Substituting the exact solutions (47) in the expression (48) after some cumber-
some algebraic transformations, we finally find the desired time parameterization

t = t(τ, C, C̃) = −2a

C 2
1

∫
dτ

(1 + τ)f(τ)
+ C̃. (49)

Recall that f(τ) =
(
τ−ln |1+τ |−C

)1/2. Unfortunately, this indefinite integral
is not calculated explicitly.



8. Lambert W -function. Time parameterization

The only thing that can be done here is to reduce the integral of transcendental function
in (49) to the integral of the so-called Lambert W -function (R.M. Corless et al., 1996)
that has been well studied. For this purpose, let us replace the integration variable

ln |1 + τ | = ζ,

which gives∫
dτ

(1 + τ)
(
τ − ln |1 + τ | − C

)1/2 =

∫
dζ[

±eζ − ζ −
(
1 + C

)]1/2 , (50)

where on the right-hand side in the integrand we have{
+eζ , for τ > −1,

−eζ , for τ < −1.

Let us again perform the replacement of the integration variable

±eζ − ζ −
(
1 + C

)
= λ. (51)

The solution of this expression with respect to the new variableλ can be represented in
the following form:

ζ = ζ(λ) = −λ−
(
1 + C

)
−W

(
∓e−(1+C) e−λ

)
,

where W (x) is the Lambert W -function (solution to the equation W eW = x).



Lambert W -function. Time parameterization

Further, by using the rule of differentiation for this function (R.M. Corless et al.,
1996, 1997), we find

dζ = −dλ+
W
(
∓e−(1+C)e−λ

)
1 +W

(
∓e−(1+C)e−λ

) dλ ≡ − 1

1 +W
(
∓e−(1+C)e−λ

) dλ.
Substituting the replacement of the variable (51) and the differential dζ into (50),
we find, instead of the last integral in (50),

−
∫

dλ

λ1/2
[
1 +W

(
∓e−(1+C)e−λ

)]
or, eventually, after a trivial replacement ξ ≡ λ1/2

t = t(τ, C, C̃) =
4a

C 2
1

∫
dξ

1 +W
(
∓e−(1+C)e−ξ2

) + C̃, ξ = f(τ), (52)

where we choose plus sign if τ > −1 and minus sign, if τ < −1.

However, such an integral cannot be calculated directly either. The difficulty
is that the LambertW -function depends on the variable ξ as the function e−ξ2 .



Lambert W -function. Time parameterization

Here, we can use the particular integral representation for the LambertW -func-
tion given in G.A. Kalugin et al. (2011). In our case it will look as follows∫

dξ

1 +W
(
∓e−(1+C) e−ξ2

) =
1

π

π∫
0

dv

∫
dξ

1∓ e−(1+C) e−ξ2ev cot v sin v/v
. (53)

Further we present the integrand as a series expansion

1

1∓ e−(1+C) e−ξ2ev cot v sin v/v
= 1+

∞∑
ν=1

(±1)ν e−ν (1+C) e−ν ξ2

{
ev cot v sin v

v

}ν
.

Let us write the integral over ξ through the Gauss error function
ξ∫

0

e−ν ξ2dξ =
1

2

√
π

ν
erf(

√
ν ξ),

and for the integration over vwe use Corollary 3.4. from G.A. Kalugin et al. (2011)

π∫
0

{
ev cot v

sin v

v

}ν
dv =

πν ν

ν !
.



Lambert W -function. Time parameterization

As a result, for the integral (53) we find a representation in the form of a series∫
dξ

1 +W
(
∓e−(1+C)e−ξ2

) = ξ +

√
π

2

∞∑
ν=1

(±1)ν

ν !
√
ν

(
e− (1+C)ν

)ν
erf(

√
ν ξ).

Substituting this representation into (52) and returning to the original variable
τ (we simply replace ξ with f(τ)), we find the following representation for the
time parameterization (49):

t(τ, C, C̃) =
4a

C 2
1

{
f(τ) +

√
π

2

∞∑
ν=1

(±1)ν

ν !
√
ν

(
e− (1+C)ν

)ν
erf
(√

νf(τ)
)}

+ C̃.

Here, we recall that under the sum sign we choose (+1)ν ≡ 1, if τ > −1,
and (−1)ν , if τ < −1.
Perhaps this representation is more convenient for approximate expressions

of time t as a function of the parameter τ , using, for example, several first
terms of the series or, vice versa, using asymptotic approximation at ν → ∞
for the terms of this series.



Conclusion

In this work, a generalization of the Lie-Poisson bracket for the case of a composite
system – a continuous medium described by a bosonic normal field variable a a

k
and hard test particle with a non-Abelian chargeQa is performed and the correspon-
ding Hamilton equations are presented. The canonical transformations for the boso-
nic normal variable and for the color charge of a hard test particle are constructed
in an explicit form.

A complete system of the canonicity conditions for these transformations is derived and
the important notion of the plasmon number density N aa′

k , which is a nontrivial
matrix in the color space, is introduced. An explicit form of the effective fourth-order
Hamiltonian describing the elastic scattering of plasmon off a hard color particle, is
found. The matrix kinetic equation for the function N aa′

k is obtained.

A color decomposition of the matrix functionN aa′

k is proposed and the first moment
with respect to color of the matrix kinetic equation is calculated that defines the
scalar equation for the colorless part N l

k of this decomposition.

The second color moment from the matrix equation defining the scalar kinetic
equation for the color part W l

k of the decomposition of the matrix function N aa′

k ,
is determined. The equation of motion for the mean value of color charge

〈
Qa(t)

〉
is obtained. This allowed the description of the system to be completely closed.
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