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In this talk

. A novel gauge-invariant by construction method in the
Casimir effect.

. The Casimir-Polder potential of an anisotropic atom
between two dielectric half spaces with Chern-Simons
boundary layers.

. The Casimir-Polder potential of an anisotropic atom
between two Chern-Simons layers in vacuum expressed
through special functions.

4. P-odd three-body vacuum effects.

5. Casimir energy of two Chern-Simons layers in vacuum.

6. Casimir energy of two dielectric half spaces with Chern-

Simons boundary layers.

. Appearance of a minimum in the Casimir energy due
to presence of Chern-Simons layers at the boundaries
of dielectrics.
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Chern-Simons layer on a dielectric half space




Chern-Simons layer on a dielectric half space

The action with Chern-Simons layer at z = 0 has the form:

S= g / 77 A, F o dtdxdly. (1)

Equations of electromagnetic field in the presence of Chern-Simons
action (1) can be written as follows:

"™ + ac®"" Fpud(z) = 0. (2)

Consider a flat Chern-Simons layer put at z = 0 on a dielectric
half space z < 0 characterized by a frequency dependent dielectric
permittivity £(w), the magnetic permeability 1 = 1. Boundary con-
ditions on the components of the electromagnetic field follow:

E;|,—0+ — e(w)Ez|,—0- = —2aH;|,=o0, (3)

Hx‘z:O+ - Hx|z:0* = 23Ex|z:07 (4)
Hy’Z:oJr — Hy|z:0* = 23Ey‘zzo. (5)



A special case: plane Chern-Simons layer in vacuum

TE or s-polarization (the factor exp(iwt + ik,y) is omitted):

E. = exp(—ik;z) + rsexp(ik;z),z > 0
E, = tsexp(—ik;z),z <0

Hy = rs_pexp(iky,z),z > 0

Hy = tspexp(—ik,z),z < 0.

TM or p-polarization:

H, = exp(—ik,z) + rp exp(ik;z),z > 0
Hy, = tpexp(—ik;z),z < 0

Ex = rp—sexp(iky,z),z > 0

E« = tpsexp(—ik,z),z < 0.
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A special case: plane Chern-Simons layer in vacuum

In vacuum the reflection coefficients for TE mode from a Chern-

Simons layer have the form:
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The Casimir-Polder potential of an anisotropic atom between two
Chern-Simons boundary layers

Anisotropic neutral atom between two dielectric half spaces with
plane Chern-Simons boundary layers, zp is a distance of the atom
from the layer and the dielectric medium characterized by the index
2, d is a width of the vacuum slit.

[V.N.Marachevsky and A.A.Sidelnikov, Phys.Rev.D, 2023].



Consider a dipole source at the point ¥ = (0,0, zp) characterized by
electric dipole moment d’(t) with components of the four-current
density [V.N.Marachevsky and Yu.M.Pis'mak, Phys.Rev.D, 2010]

p(t,r) = —d'(£)9,03(r — r') , (16)
Jl(t,r) = 0:d' ()03 (r — v . (17)

The Casimir-Polder potential is defined in terms of the scattered
electric Green function DE *(ty — to,r,¥) = Df(tl — to,r,r) —
Df "(t1 — to,r,r') from the source (16),(17) and the atomic pola-
rizability jj(t1 — t2) = i(T(d;(t1), dj(t2))) as follows:

™

T d
U(z) /2“ )DE*(iw, ¥, ¥). (18)
0



From Weyl formula
ky (v =y) /Wi =ki—kj(z'=2)) g dk,

lw\r —r| i(kx(x"—x)+
4rlr’ — x| r\ // K2 _ k2 (2m)>
x T Ry
(19)

valid for 2/ — z > 0, one can write electric and magnetic fields
propagating downwards from the dipole source (16),(17) in the form
[V.N.Marachevsky and A.A.Sidelnikov, Universe, 2021]

EO(UJ, I‘) — /N(w’ kH)eikH-rHefikz(zfzo)d2kH7 (20)
HO(w’ r) _ i/[iz « N(w7 kH)]e/'kH~rHe—i/<z(z—zo)d2k”7 (21)
N( ’kH) 87‘1’2/( (—(d ~E)E+w2d) ) (22)

where k= (kx, ky), ke =y Jw? — k2, k = (kj, —ko).



To solve a diffraction problem we write electric and magnetic fields
for z > 0 in the form

El(w,r) = / N(w, kj)e™iIMIe=k:(z=20) g2k,
+/v(w,k)eikll'rleikzzd2k||, (23)
H(w,r) = % / [k x N(w, k)]l e kele=20) 2k
+ % /[k x v(w, ky)]e®I e g%k (24)
and for z < 0 in the form
E2(w,r) :/u(w,k||)e""*le"’<zzd2k, (25)

H2(w,r) = i/ (k) x u(w, k)] — Kz[n x u(w, k))]) eI Me =gk
(26)

with K, = \/z—:(w)w2 — k2 —kZ and n = (0,0,1).



Unknown vector functions v(w, k||) and u(w, k|) can be found from
the system of boundary conditions imposed on electric and magnetic
fields:

div(E! - E%) =0, (27)

divE? =0, (28)

Efl=0 = EZl:=o, (29)

Eylz—0 = E]|z—0. (30)
Hylz=0 — Hzlz=0— = 2aE}|.o, (31)
H}|z—0+ — H2|z—0— = 2aE}|,—0. (32)



We get in polar coordinates:

rT[\/[+a T~ & aT N eikzZO
1+32T Nr wlta2r "’ ’

2
w ~ rre—a T~ | i
_ N 1Kz20
{ kl—i—azT Nt T 9]6 ’
k, °T -k T ~1.
v, = k[TM+3 z a N]e,kZZO’

1+22T 7 wl1+aT

where rry, rre are Fresnel reflection coefficients

g W)kZ—KZ kz_KZ

rrm(w, kr) = agw)k—kK ;o rre(w, k) = K,
and Ak, K
T(w, k) = zZ

(kz + K;)(e(w)kz + KZ).




At this point it is convenient to define the local matrix R resulting
from equations (33), (34):

1 —rIrtm — 32T &aT
R(a,e(w),w, k) = 2T < Coar rTEwi 27 (38)

The tangential local components of the electric field in the interval

0 < z < d from the point dipole (16),(17) located at (0,0, zy) are
expressed in terms of matrices Ry(w), Rz(w) as follows:

E eikzz AT AN
ry _— i R-R r ikz(2d—zp) R. Nr ikzzo
<E9> | — R2 R]_ e2lkzd |: 21 <N9> e +R> Ne e

ikz(2d—z) N

e Nr ik Nr —ik
— |RR ) e+ R ik: 20

+ I—R1R2e2'kzd[ 1 (/v@) et R </\/9> € ] (39)

in (39) the local components of the electric field are obtained by a
summation of multiple reflections from media with indices 1 and 2.



It is convenient to define four matrices entering (39) after Wick
rotation:

:(I Ro(iw) Ry (iw)e™2) 7" Ry(iw) Ry (iw), (40)
— (I — Ro(iw) Ry (iw)e %) "1 Ry (iw), (41)
— (I = Ri(iw)Ro(iw)e ) T Ry (iw) Ro(iw), (42
M* = (I — Ry (iw) Ra(iw)e~2k4) T Ry (iw). (43)

After integration over polar coordinates we express scattered electric
Green functions at imaginary frequencies for coinciding arguments
r =r" in terms of matrix elements of matrices M:

D5 (iw,r =¥') = D5 (iw,r =) /dk k,

X | k(e 2k Ml + e 2= M2 4 e 2ked 3 4 efzkz(dfz‘))l\/lfl)

w2
+ —

(44)
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x |—e kI My + e ke P — eI M) e 2keldm20) )
(45)

The Casimir-Polder potential can be evaluated by substituting (44),
(45) into the formula

/;’w i iw) DE “(iw, ¥, r'). (46)
0

™



For Chern-Simons layers in vacuum g(w) =1 for z < 0 and z > d.

1
M= M3 = —
(14 a2)(1 + a3) det[/ — Ry Roe—2ked)
y 3132(1 — 8132(1 — e_2kzd)) 3132(31 + 32)%
—a1ax(a1 + a2) a1ax(1 — arap(1 — e729)) )’
(47)
M? = — !

(1+ 2)(1 + ) detl] — RyRye2k]
B(1+a2(1—e2kd))  —ay(1+ a2 + ayape2ked)k
a1+ a8 +arme ) (14 a7(1— e 29))  )°
(48)

1
4 _
(1 + 3%)(1 + a%) det[l - Rleefszd]

a2(1+a3(1— e 2kd))  —ay(1+ a2 + ajape2ked) ke
ar(1+ a3+ alage_”‘zd)k% (1 + 23(1 — e 2kd))
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Note that

1
(14 22)(1 + a3) det[/ — Ry Roe—2ked]
B 1
142+ a3+ 2a1ape2ked 4 2223(1 — e2ked)2

71 72
— + 5
1+B1y 1+ Py (50)

with y = exp(—2k.d), A = a?a3, B = 2(ajap — a?a3), C = (1 +
a3)(1+ a3), y1o = —BEVBAAC 32 BAC — (a1ap — 1+ i(a1 + a))/(a122),
p1=—1/y1, p2 = —1/)/2 'Yl =1/(Ay1(y2—y1)). 72 = 1/(Ay2(y1—
¥2))-




Decomposition of the denominator in (50) into two terms leads to
an analytic result for the Casimir-Polder potential in terms of Lerch
transcendent functions. We change variables

/kdkf /kdkf (51)
0 w

and use the integral

672wd

Q<

-1

e—2kzX 1 _y
GO(Xwgaw)E/]__'_Be—MzddeZQd / It
0

e—2wX %
_ o(-pe41,5), (52
2d 56 ’ 9 d ) (5 )

where ®(aq, a2, a3) is a Lerch transcendent function.



At large distances of the atom from half spaces the Casimir-Polder
potential has the following form:

0x(0) + a1y, (0) + z2(0)

US(207 d) = U51(207 d) + Usz(d) - 32m2d4

d —
X ’YI|: a2 1+31)¢<y,-_1,4, %>_a%(1+a§)¢(yi_la4a dZO)
i=1,2
d 2d —
+ alagd)(yfl 4, —;ZO> + a%a§¢(yi’1,4, 7 ZO)} + Usa(d),

(53)

_ axx(0) + a,,(0) — az(0) /. aiaz
Uald) = 3272d* <LI4<(a1 +i)(a2 + i))

i Ghe))

Here ®(a, an,a3) - Lerch transcendent function, Lis(z) is a po-
Iylogarithm function, yi2 = (3132 -1+ i(al + 82))/(3132), Y=
1/(Ayi(y2 = 1)), 72 = 1/(Aya(y1 — 2)), A= aia5.
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Ratios of the Casimir-Polder potential of a neutral polarizable isotropic
atom located between two plane Chern-Simons layers in vacuum
Us(zo, d) to the potential of the same atom between two perfectly
conducting planes Uj4(zo, d), here z is a distance of the atom from
the layer characterized by a constant ap, d is a distance between the
layers.
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Ratios of the Casimir-Polder potentials Us(zo, d)/Uj4(z0, d) differing
by 180 degree rotation of the Chern-Simons layer characterized by a
parameter a: a» = a1 and a» = —ay. Here zy is a distance of the
atom from the layer characterized by a constant a,, d is a distance
between the layers, a dimensionless parameter v = a3/« is quantized
in quantum Hall layers and Chern insulators.



AU/ max AU

Ratio AU = Us(z0 = d/2,d,ay = —a1) — Us(z20 = d/2,d, ap = a1)
to max AU =~ 0.00587|Uig(z0 = d/2,d)|, max AU holds at a; ~
0.678.



The Casimir energy of two Chern-Simons layers in vacuum

Two Chern—Simons layers in vacuum. The upper Chern—-Simons layer
is defined by aj, the lower Chern—Simons layer is defined by as.



The Casimir energy of two Chern-Simons layers in vacuum

The Casimir energy of two Chern-Simons layers in vacuum is
[V.N.Marachevsky, Theor.Math.Phys., 2017]:

1 (- 3132
(a1, 22,d) = — 75 ( 14<(al +i)(a2 + f)>

an(Gat=)) o

where Lig(x) = 1% xK/k* = -3 0+°° drr?In(1 — xe™").

Note that for a; = —ap the force is attractive for every a; (due to a
theorem that the Casimir force between mirror objects is attractive).
For a; = ap [V. N. Markov and Yu. M. Pis'mak, J. Phys. A: Math.
Gen., 2006] one gets the Casimir energy of two Chern-Simons layers
with identically selected directions of the layers in space. In this case
the force is repulsive at all distances d for a; € [0, ag], where ag ~
1.032502, and attractive at all distances d for a; > ag.



The Casimir effect for Chern-Simons layers at the boundaries of
dielectric half spaces

&

a,

d vacuum

&

Two dielectric half spaces with Chern—Simons boundary layers. The upper
Chern-Simons boundary layer is defined by a;; the lower Chern—
Simons boundary layer is defined by as.

[V.N.Marachevsky, Phys.Rev.B, 2019]
[V.N.Marachevsky, Mod.Phys.Lett.A, 2020]
[V.N.Marachevsky and A.A.Sidelnikov, Physics, 2024]



Scattered magnetic Green's functions can be evaluated from
reflected electric Green's functions:

1 o 0 g

H A
DI/ (w, r'7 r ) = w2 GUkE/mnian 78)(/”7 Dkl’l

(w,r,r). (56)

The Casimir pressure P equals the T,, component of the
fluctuation stress tensor in a slit between half spaces; it is expressed
in terms of the scattered electric and magnetic Green’s functions:

P:'/+°°dw |:DE(W r r)+DE(w r r)—DE(w rr)+
2 —00 2w > T vy Y “ Y
DY (w, v, ¥) + D (w, r,r) = DE(w,r,r)].

(57)



The Casimir pressure is expressed in terms of matrices Ry(iw) and
Ry (iw) as follows:

1 o0 [ee] B
P=— d dk, k. k,
(2m)? / “/ r
0

~ -1 ~
[( Ro(iw) Ry ( lw)e_2kzd> Ro(iw) Ry (iw)e™2kd 4

( Ri(iw)Rp(iw)e _2E2d>1R1(iw)R2(iw)e_222d], (58)

where k; = \/w? + K2.

The corresponding Casimir energy on a unit surface has the form

E_ 1 i ! _ . \ _—2k,d
z= W/dw/dk,k,Trln(l Ri(iw)Ro(iw)e ) (59)
0 0



%107

E/S[J/m?]

‘ ‘ ‘ ‘ ‘ ‘ ‘
10 15 20 25 30 3 40 45 50
d [nm)]

Energy on a unit surface for Chern-Simons layers with a3 = a, =
0.542 at the boundaries of two SiOs glass half spaces. The minimum
of the energy is at dy = 26.52 nm.
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Position of the minimum of the energy dy for Chern-Simons layers
at the boundaries of two SiO2 glass half spaces, a = a; = a».
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Ratio of the force F with Chern-Simons layers at the boundaries of
two SiO- glass half spaces to the force F;;r between two SiO, glass

half spaces. Here a; = a, = 0.542.
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d vacuum
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The Chern—-Simons layer defined by a; is separated by a distance d
from a dielectric half space, with the boundary Chern—Simons layer
defined by as.
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The Casimir energy for SiOy glass half space substrate. Chern—
Simons plane layers are defined by a1 = 6a, a» = «.
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The Casimir energy for SiOy glass half space substrate. Chern—
Simons plane layers are defined by a; = 5a, a» = «.
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The Casimir energy for SiOy glass half space substrate. Chern—
Simons plane layers are defined by a1 = 4a, a» = «.
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The Casimir energy for intrinsic Si half space substrate. Chern—
Simons plane layers are defined by a1 = 2a, a» = «.
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The Casimir energy for intrinsic Si half space substrate. Chern—

Simons plane layers are defined by a1 = «, a» = «.



Explaining the minimum of the Casimir energy

Lifshitz force power law between two dielectrics/metals effectively
changes from retarded d—* to nonretarded d—3 behaviour at distances
of the order d ~ 10 nm.

On the other hand, the force between two Chern-Simons layers in
vacuum has d~* behavior at all separations and thus dominates the
total force at separations of the order d < 10 nm. For the condition
a = a1 = ap the Casimir force between two Chern-Simons layers
in vacuum is repulsive at all distances d for an interval a € [0, ag],
where ag ~ 1.032502.

As a result, the sum of the Lifshitz force and the force between two
Chern-Simons layers in vacuum effectively leads to a repulsive force
at short separations and to an attractive force at large separations.



Conclusions

1. A novel gauge-invariant formalism in the Casimir effect
is presented.

2. Analytic results for the Casimir-Polder potential of a
neutral anisotropic atom between two half-spaces with
Chern-Simons boundary layers are derived and expressed
through Lerch transcendent functions and polyloga-
rithms.

3. P-odd three-body vacuum effects are predicted: there
is a difference in values of the Casimir-Polder potential
of a neutral atom after 180 degree rotation of one of
the Chern-Simons layers. A neutral atom is described
by QED dipole interaction.



Conclusions

4. Existence of a regime with the minimum of the Casimir
energy due to presence of Chern-Simons layers at the
surfaces of dielectrics, the Casimir force in this case
is attractive at large distances and repulsive at short
distances between the two dielectrics with Chern-Simons
boundary layers.
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