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Motivation and main results

Motivation
In considering scattering of particles as plane waves, the disconnected contributions
to the 𝑆-matrix are excluded. This results in concealing the effects appearing for
real-world quantum states which are not the plane waves.

There is a class of processes where the wave functions of particles interact
coherently with other particles even at large energies [P.O. Kazinski, T.V. Solovyev, Eur.

Phys. J. C 82, 790 (2022)]. For coherent scattering, the scattering amplitudes stemming
from different parts of the wave packet add up constructively as if the wave packet
would be a charged fluid.

Coherent scattering provides the tool to trace the dynamics of quantum states of
particles and, in particular, to reveal the details of the collapse of the wave function
exposed to a quantum measurement. This gives us the answers to the questions:

Where is the precise boundary between the system and the detector measuring
and projecting the state of this system?
How long can we use the Schrödinger equation to describe the quantum
dynamics and when should we apply the projectors corresponding to the
measurements?
Whether does the measurement of the properties of one particle change
instantaneously the properties of the second particle entangled with the first
one so that the second particle emits photons?
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Main results

Results
The general theory of coherent processes in QFT with wave packets is
developed. This theory can be regarded as the description of holography of
quantum states.
Scattering of electrons by a hadron wave packet at small angles is described.
Scattering of photons by a photon wave packet and by an electron wave
packet at small angles is described.
The effective dielectric susceptibilities of a single photon and a single electron
are introduced and calculated. The effective mass operator of the electron in
the presence of the hadron wave packet is found.
The theory of spontaneous and stimulated transition radiation from particle
wave packets is developed.
Radiation due to quantum measurement is described. For a free particle
measured by the detector, the properties of this radiation are similar to the
properties of transition radiation.
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Main idea in terms of diagrams

Definition of the connected part of the 𝑆-matrix

𝑆𝛽𝛼 = 𝑆𝑐
𝛽𝛼 +

∑︁′

part(𝛽,𝛼)

(±1)𝑆𝑐
𝛽1𝛼1

· · ·𝑆𝑐
𝛽𝑛𝛼𝑛

. (1)

𝑆𝛽𝛼 is the 𝑆-matrix.
𝑆𝑐
𝛽𝛼 is the connected part of the 𝑆-matrix.

Process 1 + 2 → 1′ + 2′

p1

𝑆

p2

p′
1 p′

2

=

p1

p′
1

p2

p′
2

+ 𝑆𝑐

p1 p2

p′
1 p′

2

. (2)

The stability of the vacuum and of the one-particle states is implied.
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Main idea in terms of diagrams

Differential cross-section for plane-wave states

𝑑𝜎(p′
1) ∼

∫︁
𝑑p′

2

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
p1

𝑆𝑐

p2

p′
1 p′

2

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
2

. (3)

Inclusive probability to record particle 1′ for the initial states of a general form

𝑑𝑃 (p′
1) ∼

∫︁
𝑑p′

2

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝜙(p1)

𝑆

𝜓(p2)

p′
1 p′

2

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
2

=

∫︁
𝑑p′

2

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
𝜙(p1)

p′
1

𝜓(p2)

p′
2

+ 𝑆𝑐

𝜙(p1) 𝜓(p2)

p′
1 p′

2

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
2

.

(4)
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Main idea in terms of diagrams

Inclusive probability to record particle 1′ for the initial states of a general form

𝑑𝑃 (p′
1) = 𝑑𝑃0(p

′
1) + 𝑑𝑃𝑐(p

′
1) + 𝑑𝑃𝑖𝑛𝑐(p

′
1). (5)

𝑑𝑃0(p′
1) is the probability to record particle 1′ in the initial state.

𝑑𝑃𝑐(p′
1) is the coherent (interference) contribution to the probability.

𝑑𝑃𝑖𝑛𝑐(p
′
1) is the incoherent contribution to the probability.

𝑑𝑃0(p
′
1) ∼

𝐷𝜙 𝜙

𝜓 𝜓

, 𝑑𝑃𝑐(p
′
1) ∼

𝐷𝜙

𝜓

𝜙

𝜓

𝑆𝑐

𝜓

+ 𝑐.𝑐.,

𝑑𝑃𝑖𝑛𝑐(p
′
1) ∼

𝐷𝜙

𝜓

𝜙

𝜓

𝑆𝑐𝑆𝑐 .

(6)
In the coherent contribution, the state of the particle described by the wave
function 𝜓 is not changed by scattering.
The incoherent contribution is the standard contribution to the differential
cross-section for the initial particle states of a general form.
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Main idea in terms of diagrams. Holography

Probability to record a photon

𝑑𝑃 (k′) =

⃒⃒⃒⃒
⃒⃒⃒⃒
𝑑(k)

k′

+

𝑑(k)

k′

Π̄

⃒⃒⃒⃒
⃒⃒⃒⃒
2

= 𝑑𝑃0(k
′) + 𝑑𝑃𝑐(k

′) + 𝑑𝑃𝑖𝑛𝑐(k
′). (7)

𝑑𝑃0(p
′
1) ∼ 𝐷 𝑑𝑑 , 𝑑𝑃𝑐(p

′
1) ∼ 𝐷 Π̄ 𝑑𝑑 + 𝑐.𝑐.,

𝑑𝑃𝑖𝑛𝑐(p
′
1) ∼ 𝐷 Π̄Π̄ 𝑑𝑑 .

(8)
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Main idea in terms of diagrams. Other processes

Inclusive probability to record a photon in spontaneous radiation

𝑑𝑃 (k′) ∼
∫︁
𝑑p′

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝜙(p)

𝑆𝑐

k′p′

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
2

=
𝐷

𝜙 𝜙𝑆𝑐𝑆𝑐

. (9)

Inclusive probability to record a photon in stimulated radiation

𝑑𝑃 (k′
1) ∼

∫︁
𝑑p′

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ 𝜙(p)

p′ k′
1

𝑑(k)

· · · +

𝜙(p)

𝑆𝑐

k′
1p′

k′
2

𝑑(k)

· · ·

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
2

= 𝑑𝑃0(k
′
1) + 𝑑𝑃𝑐(k

′
1) + 𝑑𝑃𝑖𝑛𝑐(k

′
1). (10)

𝑑𝑃0(p
′
1) ∼

···

···

𝐷𝑑 𝑑

𝜙 𝜙

, 𝑑𝑃𝑐(p
′
1) ∼

···

···

𝐷𝑑

𝜙

𝑆𝑐 𝜙

𝜙

+ 𝑐.𝑐.,

𝑑𝑃𝑖𝑛𝑐(p
′
1) ∼

···

···

𝐷

𝑆𝑐𝑆𝑐 𝜙𝜙

.

(11)
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Main idea in terms of diagrams. Other processes

Inclusive probability to record a photon in spontaneous radiation from 𝑁 charged
particles

𝑑𝑃 (k′) ∼
∫︁
𝑑p′

1 · · · 𝑑p′
𝑁

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝜙1(p1)

p′
1 p′

𝑁−1

𝜙𝑁−1(p𝑁−1)

· · ·

𝜙𝑁 (p𝑁 )

𝑆𝑐

p′
𝑁 k′

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
2

= 𝑁𝑑𝑃𝑖𝑛𝑐(k
′)+𝑁(𝑁−1)𝑑𝑃𝑐(k

′).

(12)

𝑑𝑃𝑖𝑛𝑐(k
′) ∼

···

···

𝐷

𝑆𝑐𝑆𝑐 𝜙𝑁𝜙𝑁

𝜙1 𝜙1

𝜙𝑁−1 𝜙𝑁−1

,

𝑑𝑃𝑐(k
′) ∼

···

···

𝐷
𝑆𝑐

𝑆𝑐

𝜙𝑁−1

𝜙𝑁

𝜙1 𝜙1

𝜙𝑁−2 𝜙𝑁−2

𝜙𝑁−1

𝜙𝑁

.

(13)
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Effective photon susceptibility

Motivation
The properties inherent to single elementary particles such as mass, spin,
charges, magnetic and dipole moments, and others underlie our
understanding of physics.
One of such characteristics of particles is their dielectric susceptibility [P.O.

Kazinski, T.V. Solovyev, Eur. Phys. J. C 82, 790 (2022)]. Thus we can talk about a new
property of elementary particles.
The susceptibility specifies, in particular, the optical properties of a medium.
Therefore, the color of a photon can be defined.

Definition of susceptibility

𝑆 = −1

4

∫︁
𝑑4𝑥𝐹𝜇𝜈𝐹

𝜇𝜈 + 𝑆𝑖𝑛𝑡,

𝑆𝑖𝑛𝑡 =
1

2

∫︁
𝑑4𝑥𝐸𝑖𝜒𝑖𝑗𝐸𝑗 ,

(14)

𝐸𝑖 is the electric field strength.
𝜒𝑖𝑗 is a nonlocal tensor operator in the spacetime (the susceptibility).
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Effective photon susceptibility

ℎ𝜆2(k2)

k4, 𝜆4

𝑠𝜆1(k1)

k3, 𝜆3 k4, 𝜆4

ℎ𝜆2(k2) 𝑠𝜆1(k1)

k3, 𝜆3

+ + perm.

Figure: The diagrams describing photon by photon scattering in the leading orders of
perturbation theory. The time axis is directed upwards. The blue lines correspond to a tested
(soft) photon, whereas the black ones are for a probe (hard) photon.

ℎ𝜆2(k2)

k4, 𝜆4

+ 𝜒(𝑘4, 𝑘2)

ℎ𝜆2(k2)

k4, 𝜆4

Figure: The diagrams describing photon scattering by the effective dispersive medium
characterized by the susceptibility tensor 𝜒(𝑘4, 𝑘2) in the leading orders of perturbation theory.
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Effective photon susceptibility

Weyl symbol of susceptibility

𝜒𝑖𝑗(𝑥;K) =
8𝛼2

K2

{︁
(𝜓†

𝑠𝜓𝑠)𝛿
⊥
𝑖𝑗 − 𝑖(𝜓†

𝑎𝜎2𝜓𝑎)𝜀𝑖𝑗𝑘𝑛𝑘−

− 1

2

[︀
(𝜓†

𝑔𝜎3𝜓𝑔)𝜎3 − (𝜓†
𝑔𝜎1𝜓𝑔)𝜎1

]︀
𝑙𝑙′
(𝑒𝑙)𝑖(K)(𝑒𝑙′)𝑗(K)

}︁
.

(15)

𝑛𝑖 := 𝐾𝑖/|K|. 𝛿⊥𝑖𝑗 := 𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗 . e𝑙(K) are the transverse linear polarization vectors.

Notation

𝜓𝑠,𝜆(𝑥) := 𝑓1/2𝑠 (𝑠)𝑠𝜆(𝑥) =

∫︁
𝑑k3𝑓

1/2
𝑠 (𝑠)√︀

(2𝜋)32|k3|
𝑒𝑖k3x𝑠𝜆(k3;𝑥

0),

𝜓𝑎,𝜆(𝑥) := 𝑓1/2𝑎 (𝑠)𝑠𝜆(𝑥) =

∫︁
𝑑k3𝑓

1/2
𝑎 (𝑠)√︀

(2𝜋)32|k3|
𝑒𝑖k3x𝑠𝜆(k3;𝑥

0),

𝜓𝑔,𝜆(𝑥) := 𝑔1/2(𝑠)𝑠𝜆(𝑥) =

∫︁
𝑑k3𝑔

1/2(𝑠)√︀
(2𝜋)32|k3|

𝑒𝑖k3x𝑠𝜆(k3;𝑥
0),

(16)

𝑠 = |k3||K|(n3 − n)2, n3 = k3/|k3|.
𝑠𝜆(k3;𝑥0) is the wave functions of a single photon in the interaction representation or the
complex amplitude of the coherent state of tested photons.
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Effective photon susceptibility

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

s
′

Figure: The dependence of 𝑓𝑠(𝑠), 𝑓𝑎(𝑠), and 𝑔(𝑠) on
𝑠′ = 𝑠/𝑚2. The solid line is 𝑓𝑠(𝑠), the dashed line is
𝑓𝑎(𝑠), and the dashed dotted line is 𝑔(𝑠).

𝑓𝑠 gives the contribution to the
locally isotropic part of the
susceptibility;
𝑓𝑎 gives the contribution to the
gyrotropic part of the
susceptibility resulting in
circular birefringence;
𝑔 gives the contribution to the
part of the susceptibility leading
to linear birefringence.
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Effective photon susceptibility. Estimates

Susceptibility of a photon
For 𝑠 < 4𝑚2, a single photon wave packet can be regarded as a transparent
dispersive medium possessing linear and circular birefringences.
The circular birefringence (gyrotropy) is suppressed at 𝑠≪ 4𝑚2 and is absent
in the Heisenberg-Euler effective Lagrangian.
The general formula (15) for susceptibility is applicable for both beams of
photons in a coherent state and single photon states.

Estimate for the beam of tested photons

𝜒𝑖𝑗 ∼
2𝛼

𝜋

k2
3

𝑚2
𝐾2

𝑢, 𝐾2
𝑢 := 𝑒2A2/𝑚2 ∼ 𝛼𝑛𝑠/(|k3|𝑚2). (17)

𝐾𝑢 is the undulator strength parameter. 𝑛𝑠 is the photon number density in the tested state 𝑠𝛼.
Estimate for the single photon wave packet

𝜒𝑖𝑗 ∼ 8𝛼2 |k3|𝜎3
𝑠

𝑚4
≲ 8𝛼2 k

4
3

𝑚4
. (18)

𝜎𝑠 is the standard deviation of momenta in the wave packet of a soft photon 𝑠𝛼.
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Inclusive probability to record a photon in light-by-light scattering

Inclusive probability to record a probe photon scattered by paraxial beam of tested
ones for sufficiently small |∆k|

𝑑𝑃𝐷 =
1

2

∑︁
𝜆4,𝜆

′
4

𝐷
(𝑠)

𝜆′
4𝜆4

{︁
𝜌(1 + 𝜁𝜎)−

− 2κ(𝜉0 + 𝜉𝜁) Im 𝜌− 2κ
[︀
(𝜉 + 𝜉0𝜁) Im 𝜌+ (𝜉 × 𝜁)Re 𝜌

]︀
𝜎
}︁

𝜆4𝜆
′
4

𝑑k4.

(19)

𝐷(𝑠) is the projector to a certain spin state of the recorded photon.

𝜌𝛽𝛽′ =
(2𝜋)3

𝑉

(1 + 𝜁𝜎)𝜆2𝜆
′
2

2
𝜌(k2;k

′
2) – initial state of the probe photon,

𝜌 := 𝜌(k4,k4), 𝜌 := 𝜌(k4‖;k4) =

∫︁
𝑑k4⊥𝜌(k4‖,k4⊥;k′

4)
⃒⃒⃒
k′
4=k4

,

k4‖ := (n4 − n3)
(k4(n4 − n3))

(n4 − n3)2
, κ =

𝛼2

2𝜋2|k4||n4 − n30|
,

(20)

𝜉𝑙0 =

∫︁
𝑑k3

|k3|
𝑓𝑠(𝑠)𝑠

†(k3)𝑠(k3), 𝜉𝑙1 =

∫︁
𝑑k3

2|k3|
𝑔(𝑠)𝑠†(k3)𝜎1𝑠(k3),

𝜉𝑙2 =

∫︁
𝑑k3

|k3|
𝑓𝑎(𝑠)𝑠

†(k3)𝜎2𝑠(k3), 𝜉𝑙3 = −
∫︁

𝑑k3

2|k3|
𝑔(𝑠)𝑠†(k3)𝜎3𝑠(k3),

(21)

𝑠𝑙(k3) are given in the basis of linear polarization vectors.
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Inclusive probability. Particular cases

Unpolarized probe photon, 𝜁 = 0

𝜁0 = 1 → 𝜁 ′0 = 1− 2κ𝜉0
Im 𝜌

𝜌
, 𝜁 = 0 → 𝜁′ = −2κ𝜉

Im 𝜌

𝜌
. (22)

The hard probe photon being initially in the state with the Stokes vector
𝜁 = 0 becomes polarized with the Stokes vector proportional to the vector 𝜉.

The case Im 𝜌 = 0

𝜁 → 𝜁′ = 𝜁 − 2κ(𝜉 × 𝜁)
Re 𝜌

𝜌
. (23)

The Stokes vector 𝜁 precesses around the vector 𝜉.
The polarization degree of a hard probe photon, |𝜁|, is conserved up to the
terms of higher order in the coupling constant.
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Inclusive probability. Estimates

Relative magnitude of the effect for tested beams of photons

𝜂 ∼ 𝜒𝑖𝑗 |k4|𝐿 ∼ 𝛼

𝜋

k2
3

𝑚2
𝐾2

𝑢|k4|𝐿 = 2.31× 10−8𝐾2
𝑢

|k4|
𝑚

𝐿

𝜇m
k2
3

eV2 . (24)

𝐿 is the length of the path traveled by the probe photon wave packet in the tested one.

Relative magnitude of the effect for a single tested photon

𝜂 ∼ 6.60× 10−7 𝑠𝜎
2
𝑠

𝑚4
. (25)

𝐿 ∼ 1/𝜎𝑠.
𝑠 = |k3||k4|(n4 − n30)2.
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Effective electron susceptibility

𝑑(k)

k′

𝜙(p)

p′

+

𝑑(k)

p′

𝜙(p)

k′

+

p′

𝜙(p)

k′

𝑑(k)

Figure: The diagrams describing the Compton process in the leading orders of the perturbation
theory (the time axis is directed upwards).

𝑑(k)

k′

+

𝑑(k)

k′

Π̄

Figure: The diagrams describing photon scattering by the effective potential determined by the
polarization operator in the leading orders of perturbation theory.
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Effective electron susceptibility

Susceptibility of a photon
Coherent scattering of photons by an electron wave packet is the same as
scattering of photons by a fluid with plasma dielectric permittivity.

Density matrix at the instant of time 𝑥0

𝜌(p,p′;𝑥0) := 𝑒−𝑖𝑝0𝑥
0

𝜌(p,p′)𝑒𝑖𝑝
′
0𝑥

0

. (26)

Relativistic density matrix in the coordinate representation

𝜌(x,y;𝑥0) :=

∫︁
𝑑p𝑑p′𝑚

(2𝜋)3
√︀
𝐸(p)𝐸(p′)

𝑒𝑖px−𝑖p′y𝜌(p,p′;𝑥0). (27)

Weyl symbol of the dielectric susceptibility of the electron wave packet in the
small recoil limit

𝜒𝑖𝑗(𝑥;K) = −4𝜋𝛼𝜌(x,x;𝑥0)

𝑚𝐾2
0

𝛿𝑖𝑗 . (28)

𝐾0 = |K|.
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Electron mass operator in the presence of a hadron wave packet

𝜑𝑠(p)

p′, 𝑠′

𝜓𝑟(k)

k′, 𝑟′

+

𝜑𝑠(p) 𝜓𝑟(k)

p′, 𝑠′ k′, 𝑟′

𝑞

𝛾

Figure: The diagrams describing electron hadron scattering in the leading orders of the
perturbation theory (the time axis is directed upwards). The blue lines correspond to hadrons,
whereas the black ones are for electrons.

𝜑𝑠(p)

p′, 𝑠′

+ 𝑀(𝑝′, 𝑝)

𝜑𝑠(p)

p′, 𝑠′

Figure: The diagrams describing electron scattering by the effective potential determined by the
mass operator in the leading orders of perturbation theory.
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Holography of a hadron wave function

Rutherford formula

𝑑𝜎 =
(︁ 𝑍𝛼

𝑚𝑣2

)︁2 sin 𝜃𝑑𝜃𝑑𝜙

sin4(𝜃/2)
. (29)

𝜃 and 𝜙 are the spherical
coordinates.
𝛼 ≈ 1/137 is the fine structure
constant. 𝑍 is the charge number.
𝑚 is the electron mass. 𝑣 is the
electron velocity.

Results
In the domain where the wave packet of the initial electron
interferes with the scattered wave, the coherent scattering
dominates and the hadron wave packet can be regarded as a
charged fluid.

Out of this domain, the standard incoherent contribution
dominates. The hadron wave packet can be considered a gas
of point charged particles scattering incoherently the incoming
electrons. For sufficiently narrow in momentum space electron
wave packets, the scattering probabilities are summed up
rather than the scattering amplitudes.
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Electron by hadron scattering. Some results

Results
The effective mass operator of the electron determining the coherent scattering is

𝑀(𝑞) = 𝑒𝛾𝜇𝐴𝑒𝑓𝑓
𝜇 (𝑞), 𝑗𝑒𝑓𝑓𝜇 (𝑞) := −𝑞2𝐴𝑒𝑓𝑓

𝜇 (𝑞),

𝑗𝑒𝑓𝑓𝜇 (𝑥) :=

∫︁
𝑑𝑞

(2𝜋)4
𝑒𝑖𝑞𝑥𝑗𝑒𝑓𝑓𝜇 (𝑞) = 𝑒𝑀

∫︁
𝑑k𝑑k′

(2𝜋)3
𝜌𝑛𝑟𝑟′(k,k

′)√︀
𝑘0𝑘′0

𝑒𝑖(𝑘
′−𝑘)𝑥𝑢̄𝑟′(k′)Γ𝜇𝑢

𝑟(k).

(30)
Γ𝜇 is a nonlocal electromagnetic vertex.

The inclusive probability to record an electron in electron-by-hadron scattering
contains the infrared divergence at the order 𝛼2 of the perturbation theory. It
resides in the modulus squared of the standard connected part of the 𝑆-matrix. It
stems from the fact that the electron wave packet is nonzero for the momentum of
the electron recorded by the detector, i.e., for such a momentum that the
transferred momentum vanishes. The incoherent contribution to the spin density
matrix of the recorded electron reads

𝑤
(4)

𝑠′1𝑠
′
2
=
𝑍2𝑒4𝛿𝑠′1𝑠′2
2(2𝜋)4𝛽′2

𝑒

∫︁
𝑑q⊥𝑑q̃⊥𝑑k

′

(q2
⊥ − 𝑖0)(q̃2

⊥ + 𝑖0)
𝜌𝑒(p

′+q⊥,p
′+q̃⊥)𝜌𝑛(k

′−q⊥,k
′−q̃⊥).

(31)
q⊥ = k′

⊥ − k⊥, q̃⊥ = k̃′
⊥ − k̃⊥ are the transferred momenta transverse to 𝛽′

𝑒.
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Radiation due to quantum measurement

Initial state
𝑅̂ = 𝑅̂𝑝ℎ ⊗ 𝑅̂𝑒 ⊗ |0⟩𝑒+⟨0|𝑒+ . (32)

The measurement is performed at the instant of time 𝑡0 < 𝑡𝑜𝑢𝑡. As a result, one of
the electrons is detected in one of the states distinguished by the projector 𝐷𝑒 in
the one-particle Hilbert space of electron states. The projector in the Fock space is
Π̂𝐷𝑒 . At the instant of time 𝑡 = 𝑡𝑜𝑢𝑡, a single photon is recorded in one of the
states singled out by the projector 𝐷 in the one-particle Hilbert space of photon
states. The corresponding projector in the Fock space is Π̂𝐷. The probability of
such a chain of events is

𝑃 (Π̂𝐷 ← Π̂𝐷𝑒) = Sp(Π̂𝐷𝑈̂𝑡𝑜𝑢𝑡,𝑡0Π̂𝐷𝑒 𝑈̂𝑡0,𝑡𝑖𝑛𝑅̂𝑈̂𝑡𝑖𝑛,𝑡0Π̂𝐷𝑒 𝑈̂𝑡0,𝑡𝑜𝑢𝑡). (33)

𝑈̂𝑡2,𝑡1 is the evolution operator of QED and all the operators are given in the Schrödinger
representation.

Conditional probability

𝑃 (Π̂𝐷|Π̂𝐷𝑒) = 𝑃 (Π̂𝐷 ← Π̂𝐷𝑒)/𝑃 (Π̂𝐷𝑒). (34)

Probability to detect the electron at the instant of time 𝑡0 in the states distinguished by
the projector 𝐷𝑒

𝑃 (Π̂𝐷𝑒) = Sp(Π̂𝐷𝑒 𝑈̂𝑡0,𝑡𝑖𝑛𝑅̂𝑈̂𝑡𝑖𝑛,𝑡0). (35)
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Radiation due to quantum measurement. Free Dirac particle

Amplitude of stimulated radiation from a single free Dirac particle due to
measurement of its state

𝐴𝛾 =− 𝑖𝑒
[︁ ∫︁ ∞

0

𝑑𝑥0
∫︁
𝑑x𝜙(𝑥)Γ𝑖𝜙(𝑥)

𝑓*(𝜆)𝑖(k)𝑒
𝑖𝑘𝜇𝑥

𝜇

√
2𝑉 𝑘0

+

+

∫︁ 0

−∞
𝑑𝑥0

∫︁
𝑑x
𝜙(𝑥)Γ𝑖𝜓(𝑥)

⟨𝜙|𝜓⟩
𝑓*(𝜆)𝑖(k)𝑒

𝑖𝑘𝜇𝑥
𝜇

√
2𝑉 𝑘0

]︁
.

(36)

𝜓(𝑥) is the free evolving state of the Dirac particle.
𝜙(𝑥) is the free evolving state coinciding at 𝑡 = 0 with the state which the detector projects to.

The first term in this expression describes the radiation from the classical
current of a Dirac particle after the reduction of the wave function of this
particle.
The second term in this expression defines the normalized amplitude of
photon radiation due to transition from the state 𝜓 to the state 𝜙 during the
time interval 𝑡 ∈ (−∞, 0].
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Conclusion: Photon and electron

Results
The wave packet of any particle interacting with electromagnetic field possesses a dielectric
permittivity that is revealed in coherent scattering of a photon by the wave packet of this particle.

The photon wave packet has a dielectric permittivity of a transparent medium possessing frequency
and spatial dispersions and linear and circular birefringences. The susceptibility of a beam of
photons is proportional to the particle number density of photons at a given point.

The wave packet of an electron has the same dielectric permittivity as a plasma. In this sense, it is
metallic in color.
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