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Never do anything against conscience
even if the state demands it J
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Introduction and Summary

Ever since of success of the Feynman formalism in QED, corresponding
field-theoretic formulations have been in the forefront of strong
interaction dynamics since the early fifties of past century, the main
strategy being to device various 'closed’ form of approaches which are
represented as appropriate 'integral’ equations. One of the earliest efforts
in this direction was the Tamm-Dancoff formalism,

I.E. Tamm:J. Phys. 9:449, 1945;
S.M. Dancoff:Phys. Rev. 78:382, 1950 J

which showed a great intuitive appeal. See also

V.P. Silin, 1.Y. Tamm, V.Ya. Fainberg: ZhETF 29:6, 1955. )




Introduction and Summary

The 3D Tamm-Dankoff equation and the 4D Schwinger-Dyson equation
(SDE) have been the source of much wisdom underlying the formulation
of many approaches to strong interaction dynamics. To these one should
add the Bethe-Salpeter equation (BSE),

E.E. Salpeter and H.A. Bethe: Phys. Rev. 84:1232, 1951 J

which is an approximation to SDE for the dynamics of a 4D 2-particle
amplitude, characterized by an effective interaction, for the N-N
interaction, but now adapted to the quark level.



Introduction and Summary

and to Logunov-Tavkhelidze Quasi-potential equation

A.A. Logunov and A.N. Tavkhelidze: Nuovo Cimento 29:380, 1963 J

and Kadyshevsky formalism:

V.G. Kadyshevsky: Sov Phys. JETF 19:443;597, 1964,; Nucl. Phys.
B6:125, 1968;
C. ltzikson, V.G. Kadyshevsky, I.T. Todorov: Phys. Rev. D1:2823, 1970.




Introduction and Summary

The report is organized as follows:
In sections 2-3 we results the solutions of ladder perturbative BSE. And
discuss about multi-fermion equations in QED.
In Section 4 we describe the method of construction of the MFE with the
fermion bilocal source for the NJL model with the SU(2)-symmetric
4-quark interaction and, for the sake of completeness, consider the
well-known leading approximation results of this model. Also in this
section we investigate the first-after-leading step of the iteration scheme,
which gives us the equations for the leading order 2-particle

and NLO correction to the propagator of quarks.
In Section 5 we describe the second step of the iteration scheme. As a
result we obtain the equations for 4-quark and for the
3-quark . We also obtain in this step the equations for
NLO 2-quark function and NNLO correction to quark propagator. We
discuss the structure of second step equations and obtain the solutions of
4-quark and 3-quark equations.



Introduction and Summary

In Section 6 we describe the 3th step of iteration scheme. As a result we
obtain the equations for 6-quark and for the 5-quark
, and, the NLO equations for 4-quark and 3-quark

. We also obtain in this step the equations for NNLO 2-particle
function and NNNLO correction to quark propagator.
In Section 7 the modification of the MFE for the NJL model in the
formalism with the multilocal diquark and triple-quark sources is briefly
discussed.



Section 2. The ladder Bethe-Salpeter equations and their
possible solutions

The ladder approximation in method of BSE for the scattering amplitude
in field theory models was originally used justify Regge behavior at high
energies

B.A. Arbuzov, A.A. Logunov, A.N. Tavkhelidze, R.N. Faustov: Phys.
Lett. 2:150, 1962;

J.C. Polkinghorne: J. Math. Phys.4:503, 1963;

D. Amati, S. Fubini, A. Stanghellini: Nuovo Cim.26:896, 1962;

L. Bertocchi, S. Fubini, M. Tonin: Nuovo Cim.25:626, 1962

and was the point of departure in the construction of the multi-peripheral
model.



Section 2.

Different methods have been used to obtain exact solutions of ladder
BSE for forward scattering amplitude in a number of models and other
works by B.A. Arbuzov and Co

B.A. Arbuzov, V.E. Rochev: Yad.Fiz. 21:883, 1975;

B.A. Arbuzov, V.Yu. Diakonov, V.E. Rochev: Yad.Fiz. 23:904, 1976;
K.G. Klimenko, V.E. Rochev: Yad.Fiz. 31:448, 1980:;

V.Yu. Diakonov: TMF 43:218, 1980




Section 2.

In particular for ladder BSE for imaginary part of scattering amplitude
ptp =k+F

— TA28(s—u? A2 4 0(s' — q0)d(¢° — 1*) s’
Fls 1) = mX0(s=1)+ Gy / g2 —mall(k — g m?]F(‘l)’”

Here s = (p+p')%, s’ = (p+p' —q) t = (p— k)? and p is exchange
mass, and my is the mass in other propagators,
d*q = dgo| 7 |d| 7 |dcosbdep.




Section 2. Forward scattering:

In these works to find via different mathematical way (the inverse Mellin
transformation,a and/or via diagonalized way by means of an expansion
in Gegenbauer polinomial and at t = 0 - only forward scattering, in
common approximately in form

F(s') = C(g?,0)(—)", |

2
where g = 2, and Regge parameter o has the form

32m2m?2
1, T
a=—= = .
2" Va1TI

Such result lead us to idea, which consist in finding the solution in
starting as Regge form of behavior of scattering amplitude.




Subsection 2.1. Easy way for solution of ladder BSE for
imaginary part of forward scattering amplitude

Let us to introduce in kernel of integral (1) a one as integral
1= [6((p+p" —q)* — s')ds'. In case of forward scattering p = k,
p’ = k' and p? = m?, the integration with respect to ¢, dcosf), dqy and

dq| incms. | P+ |?| = 0 is trivial. The result is

N2 (1= $)F(s)
PO = s | 1y 2 J

m2

Let us to find the solution as
F(s) = s> )

The result of integration is the sum of two hypergeometric equations

64772/12% F(1,2;a+ 3; _ZH)+F(1 2; a0+ 3; z;) (2)J



Subsection 2.1. Forward scattering

1) In case m << p,

1 A2
===z =/l 4 ==
a="3* 3\ T2 J
2)At p<<m
32m2m? 1. u?

S.A. Gadjiev, R.G. Jafarov: Dokl AN Azerb. , v.XLIIl: Noll: 20, 1986;
S.A. Gadjiev, R.G. Jafarov: Dokl.AN Azerb. , v.XLIIl: No1:34, 1987. J




Subsection 2.2. Small momentum transfers

The Eq.(1) after the integration with respect to ¢, dcost), dgo and d|q |

%
incms. |P|+[p'| =0, incase p=Fk, p/ = k" and p? = m? and
k? = m? receive the form

F(s,t) =

772)\2
8(2m)4| T2V = -
F(s,t)

- | ds'dz ,
/ (B+ 2)(22 + 2B202 + B2 + 202 — 1)1/2
where z = cosf), zy = cosfy, Op-the scattering angle and
N2_S+S/
Ay e
Let us take in place zg = 1 + ¢, where ¢ << 1 and to expand to series.
We find the solution as F'(s,t) = s®*. The result of integrations is

(a+ 1) (a+2)
N1+ goz)

6m

6472 12 :F(1,2;a+3;—i%)+F(1,2;a+3;i%). (3)




Subsection 2.2.

1) In case m << p,

2)At p<<m
3272m? 1 w2
= nt+ (-2 4l n=1,2,3, ...
Q n = ( A2(1+67t’b2)+2nm2) n

In case ¢t = 0 all results have exact co-ordinate with results of forward
scattering.

S.A. Gadjiev, R.G. Jafarov: Krat. Soobsh. po Fizike FIAN, No11:25, 1986.
S.A. Gadjiev, R.G. Jafarov, A.l. Livashvili: 1zvest. Vuzov. Fizika No5:49,
1989.




Section 3. Multi-particle equations

The multi-particle (three or more particle) generalizations of the 4D BSE
have been studied in detail. A straightforward generalization of
two-particle BSE has bee intensively studied in sixties-seventies of last
century. A best exposition of these studied can be found in the work of
Huang and Weldon

K. Huang and H.A. Weldon: Phys. Rev.D11:257, 1975.

J

These generalizations are based on the analysis of Feynman diagrams, and
all statements have a perturbative sense only. A form of the equations
was chosen arbitrary. An additional disadvantage of the diagrammatic
method is the fact almost all propositions can be formulated in words and
cannot be formalized. The above-mentioned difficulties cannot be
resolved in the framework of the diagramma. However, the natural
language exists for the description multi-particle equations in the
framework of the Lagrangian field theory. There are Legendre
transformations of the generating functional for the



Section 3.

Functional Legendre transformations were firstly introduced in quantum
statistics and applied to the quantum field theory

Quantum Field Theory and Quantum Statistics (Essays in Honour of the
sixtieth birthday of E.S. Fradkin) (Eds. I.A. Batalin, C. Isham, and G.A.
Vilkovisky) Vols 1 and 11 (Bristol: Adam Hilger, 1987);

Rochev V.E.: Teor. Mat. Fiz. 51:22, 1982.

With these transformations one can obtain multi-particle equations as a
consequence of Schwinger ones. These multi-particle equations are
model-independent, and they do not depend on perturbation theory.

A number of perspective physical applications of the effective models are
connected with multi-particle functions, which are, in the main, the
subject of present report.



Section 3.1. New non-perturbative method in QED and the
multi-fermion equations

The problem of nonperturbative calculations in QED arose practically
simultaneously with the principal solution of the problem of perturbative
calculations with based on renormalized coupling constant perturbation
theory. It is necessary to recognize, however, that the progress in the
nonperturbative calculations during last decades is not to large. A new
approach to nonperturbative calculations in quantum electrodynamics is
proposed in work

Rochev V.E.:J.Phys. A33:7379, 2000. )




Section 3.1.

This approach is based on a regular iteration scheme for the solution of
Schwinger-Dyson equations for generating the functional of

of QED by an exactly soluble equation. Its solution generates a
linear iteration scheme each step of which is described by a closed system
of integro-differential equation.
Note that equations of Green function at leading approximation and at
the first step of iteration scheme in two versions. First of them on the
language of Feynman diagrams of perturbative theory is analog of
summation of chain diagrams with fermion loop.
The second version of the iteration scheme can be compared on the
diagram language a ladder summation. The generating functional has the
form

G(J.1) = / D(p. b, A)expil / (LT () Ay ()~ / dedy 3P (y, )97 (2)}.



Section 3.1.

Functional derivatives of G with respect to sources are vacuum
expectation values. SDEs for the generating functional of
of QED has the forms:

1 166G oG
(gw,a2 — 040y + —0,0,) = —— + ietr {'Yu] +J,G=0, (4)

d; 10J, on
2 G e %G 0G
G+(28—m)%+gw(n}m—n*%_0. (5)

In correspondence with the choice of the leading approximation i-th term
of the iteration expansion of the generating functional

G =ag0 + elty) + G2 +-e (6)

which is solution of iteration scheme equations. A solution of equations
(4), (5) is looked in the form:

G = p@O GO,



Subsection 3.1.1. Chain approximation

Since P(9) =1, it is evident that for any ”i” the functional P() is a
polynomial in functional variables J and 7. This circumstance is very
important since it means the system of equations for coefficient functions
of this functional take closed in any order of the iteration scheme.

This iteration scheme has no explicit small parameter. In some sense, the
sources J and 7 play the role of such a parameter. Expansion (6) of the
generating functional should be treated as an approximation of G(.J,7)
near the point J, =0, n = 0.

The iteration equation for the generating functional of of
chain approximation in switching off photon sources J,, = 0 has the form:

G 9 5 5GW 5G =1
—te“{Dypyxyu—tr[v =
o~ Dt =g Ik ==

G 4 (i —my) 0

The solution of first step equation is

G = {;SQ *n? + s<1>}



Subsection 3.1.1.

Let us use the following Feynman graphical rules

=1s
l
= iDyy
'—é—o =e
[ T Figure 1.

we obtain the BSE in chain approximation

e G




Subsection 3.1.1.

as means as series (see Fig.2)
)~
g Figure 3.

The second step generation functional is

G®(n) = PP ()G, (8)

where

1 1 . 1
P® = 154*774 + 553 *x1° 4 55&” *n2 4+ S@ %y,



Subsection 3.1.1.

The second iteration step contains the equations for the 4 S;- and 3 S5
functions and also the equations for the first order correction to
2-fermion function Sél) and 2-order correction equation to electron
propagator S(®). For these 4 functions we have a system of four integral
equations, which , and all equations, (also for next, ladder approximation
equations) posses the similar structure.

Sn =S89 —ie* {(DS, xS - 7,S) * tr[,5n] }

and differ from each other by the structure of inhomogeneous terms S°.



Subsection 3.1.1.

The inhomogeneous term SY for 4-electron function is

$9=-3.{5-5 S5},

where S5 is very well known form.

Figure 4.



Subsection 3.1.1.

The inhomogeneous term of 3-electron equation is

S§=-2-{8-8-8W} —2.{S- Sy} —ie* {(D, * Svu) *tr[y,S4]} -

Here S() s first step correction electron function, which is defined in

preceding step.

Figure 5.



Subsection 3.1.1.

The inhomogeneous term of the first order correction for two-electron
function has the following form

(551))0 = —{S- 5(1)} 2 {(DZV*S’YM) *tr[’yV53]} ;

and the inhomogeneous term of second-order correction for single
electron function absence



Subsection 3.1.2. Ladder BSE

As we note the leading order and first step equations are very well known

Rochev V.E.:J.Phys. A33:7379, 2000.

Here we would like to demonstrate the solution of ladder BSE for
two-electron bound state and the constructing of second order equations.

Jafarov R.G.:Izv. Akad. nauk Azerb. 25, No5:19, 2005;
Gadjiev S.A., Jafarov R.G.:lzv. Akad. nauk Azerb. 26, No5:20, 2006.

This step leads us very to well known two-electron function equation is
Sy =—-5-S+K%S5y
where K = ie*{tr[D,, * 557,527,5], } is the kernel of equation.



Subsection 3.1.2. Ladder BSE

The equation for first step electron propagator is
S = ie2wa * SyuSavy + ieszw * S’yﬂS(l)’yVS

which have a following graphical form



Subsection 3.1.2. Ladder BSE

BSE in momentum space is
ST Sy ST =1-1+41ie’D;, *x 7,527

k+22 . 3 k’+22 k+22 k+22 k,+zE k'+22
(s9) « = EEECGRE
k-ip k’-g k-zE k-g k,-g ¥ %’
Figure 10.

The BSE for bound states is
SlyPe—1l = ie’D, * X P,

- >— - % >—
B B v B




Section 4. Mean-field expansion for Nambu—Jona-Lasinio
model and the multi-quark functions

A number of perspective physical applications of the effective models are
connected with multi-quark functions, which are the subject of present
report. The basic method of calculations is a formalism of multi-local
(double, triple, etc.) sources

Expansion, Regularization Issue, and Multi-Quark Functions in

Aydan A. Garibli, Rauf G. Jafarov, and Vladimir E. Rochev Mean-Field
Nambu—Jona-Lasinio Model :Symmetry 11 (2019) 5, 668. J

As an object of application of the method we choose Nambu -
Jona-Lasinio (NJL) model

This model is one of the most successful effective models of quantum
chromodynamics for the light hadrons. For review see

Hatsuda T. and Kunihiro T.:Phys. Reports 247:221, 1994;

Klevansky S.P.:Rev. Mod. Phys. 64:649, 1992;
Volkov M.K., Radjabov A.E.:Uspekhi Fiz. Nauk 176:569, 2006. J




Section 4.

It is necessary to note, that this method has been successfully applied for
the other field-theoretic models and can be applied also for analogous
calculations in other similar effective models.

The multi-quark functions arise in higher orders of the MFE for the NJL
model. To formulate the MFE we have used an iteration scheme of
solution of the Schwinger-Dyson equation with the fermion bilocal
source, which has been developed in works by Rochev. We have
considered the equations for of the NJL model up to the
third order of the MFE. The leading approximation and first order of the
MFE maintains equations for the quark propagator and the 2-quark
function and also the NLO correction to the quark propagator. The
second order of MFE includes the equations for the 4-quark and the
3-quark functions and also the equations for the NLO 2-quark function
and NNLO quark propagator.



Section 4.

Furthermore we have considered the generalization of the method in the
framework of the NJL-type models, which includes the other multi-local
sources (specifically, the diquark and 3-quark sources).

We have found a solution of the 4-quark and 3-quark equations. The
solution of the 3-quark function is a disconnected combination of the
leading-order functions and, consequently, the corresponding physical
effects (i.e., pion-pion scattering) are suppressed in this order of the
MFE. Therefore, we also investigate the third step of iterations, which
gives us the equations for the 6-quark and 5-quark functions and the
equations for the NLO 4-quark and 3-quark functions. The solution of
the 6-quark functions equation has the disconnected form, which is
similar to the solution for the 4-quark function of the preceding step.
The solution of the second-step four-quark equation gives us a possibility
to close the equation for the 3-quark function.



Subsection 4.1. The method. Leading order and first step
equations

The Lagrangian of the 2-flavor NJL model may be written in the
well-known form

L = idy + g [(zpw)z + (W’%T%)Z} ~ (9)

To construct the MFE we use an iteration scheme of the solution of
functional-differential SDE

A0G b P0G 0 [ 0G| 0G
G—|—285n—|—zg{5ntr[5n] +iysT Mtr[wm 577]} =nx o (10)

for the generating functional G of Green functions.



Subsection 4.1.

The generating functional G can be represented as the functional integral
with bilocal fermion source 7:

6 = [ D dexpi{ [sr— [asdyioty vt}
We shall solve Eq. (10) employing the method which proposed in work by

Rochev V .E.Jafarov R.G.:Central Eur. J. Phys. 2:367, 2004
(arXiv:hep-ph/0311339). J

The solution of the equation of leading approximation,i.e., the
functional-differential SDE (10) with zero r.h.s., is the following

functional G(©) = exp {Tr (S * 77) }, where S is solution of the equation

14 i0S +igS - tr[S(0)] = 0. (12)



Subsection 4.1.

The leading approximation generates the linear iteration scheme

G:G(O)+G(1)+---—|—G(")—|—---,

consists in the step-by-step solutions of the equations

L A0G™) 5 [6Gn .0 L0G™ sG(n=1
G™ 1id 57 —Hg{% r[ 5 ] —V5T 577t’l“|:’y57' 5 }}—77* e
(13)
Functional G™ is G = PG where P(™) is a polynomial of 2n
-th degree on the bilocal source 7.
The unique connected function of the leading approximation S is

the quark propagator. A solution of Eq. (12) is
S(p) = (m—p)~",

where m is the dynamical quark mass, which is a solution of the gap
equation of the NJL model in the chiral limit.



Subsection 4.1.

The other connected appear in the subsequent steps of
the iterative scheme.

The first iteration step contains the leading-order equation for the
2-particle Sy quark function

So=—-5-S+K*%S5, (14)
K = ig{(S - 8) xtr[Se] — (Sv57%S) *tr['y57“52]} is the kernel of

equation

and first order quark function equation

Figure 12.



Section 5. Second step equations

The second step contains the equations for the four S4- and 3-particle Ss
functions and also the equations for the two-particle function Sél) and
the second-order corrections to the quark propagator S(2). For these 4
functions we have a system of four integral equations. All these equations
(and all equations of following steps of the iteration scheme) possess the
structure, which is similar to the structure of Eq. (14):

S, =582+ ig{(S - 8) % tr[Sy] — (Sys7 - S) *tr['ysT“Sn]} (15)

— 0
= —— _Sn+ ﬁ
Figure 14.

and differ from each other by the structure of inhomogeneous terms S2.



Section 5. Second step equations

The inhomogeneous term in the equation for 4-quark function Sy is

Sy =-3. {S-S-Sg}, (16)

where S5 is defined in preceding section by Eq. (

xéﬂ

Figure 15.



Section 5. Second step equations

The inhomogeneous term in the equation for 3-quark function S3

59 = —2{5.5-5(”}—2- [5-52] +ig-S*{tr[S4]—757'757“[757‘5’4]}. (17)

e S



Section 5. Second step equations

The solution of 4-quark equation is the sum of products of 2-quark
functions Ss:

543-{52-52} (18)

_, ==
==0==: B

R.G. Jafarov and V.E. Rochev: Proceedings of the XXVIII International
Workshop on the FPHEP and Field Theory(2005), New Physics at
Colliders and Cosmic Rays, Moscow Region, Protvino, p.27-33, 2005 and
in Proceedings of Workshop LHPO06, Tehran, Iran, 2006 (arXiv:
hep-ph/0609183).

Figure 17.




Section 6. Structure of third step of iteration step equations

As we have showed above the equation for the 4-quark function S, has a
simple exact solution which is the product of first-order 2-quark functions
(see Eq. (18)). As it seen from this solution, the pion-pion scattering in
NJL model is suppressed, i.e. in the second order of MFE this scattering
is absent. This process arises in the third order of our iterative scheme,
i.e. in NLO 4-quark function Sy)

The third-step generating functional is

GO ] = { Tr(Sg * 1) ) + %Tr(&; * 775) + %Tr(Sil) * 774)—|-

(s + )+ STr(58 )+Tr(S(3)*n)}G(O).

R.G. Jafarov: Fizika Azerb NAS, XI, No 3:27,2005. )




Section 6. Structure of third step of iteration step equations

After standard operations we obtain the equations for six-quark function
Sg and for 5-quark function S5. Inhomogeneous terms are following:

53:5-{—5-5-54} (19)

—  Figure 18.

N
E;::g



Section 6. Structure of third step of iteration step equations

and

S5 = —4'{5'5'53'}—4' {5-54} +i9{tr [S*Sa] —tr |:S'YSTG*S675TG:| }7

accordingly. The equations for 6-quark function and for the 5-quark
function with inhomogeneous term (19) and (20) in our iteration scheme
are new. The third step of iterative scheme gives us the equation for

4-quark function (S(l)).

i/ \ e - ‘ —4
=== =20 =R
- T | g
+ p—t— -—-@-—-
- — —— . Figure 19.




Section 6. Structure of third step of iteration step equations

As we note above the structure of this equation have are the form (15)
with following inhomogeneous term

(S0 = —3.{5-S.S§1> }—3. [5-53} —I—ig{tr {5*55] —tr [5757%5575#} }

The equation for NLO 4-quark function Sil) gives us possibility to
describe the pion-pion scattering in quark fields context. The
inhomogeneous term (21) of equations for 4-quark function Sil) contains
5-quark function S5, three-quark function S35 and 2-quark function Sél).
The inhomogeneous term (20) for 5-quark equation include the 6-quark
function Sg, 4-quark function S, and 3-quark function Ss3. Before the
investigation of four-quark function Sf) it is necessary to find the
solution of equation for 6-quark function Sg, because the inhomogeneous
part (20) includes function Sg. Also it is necessary to find a solution of
equation for NLO 2-quark function Sél) :



Section 6. Structure of third step of iteration step equations

The solution of six-quark equation is the sum of products of 2-quark
functions S5 and 4-quark functions Sy:

S —5-{52.54} (22)

S s =

In this step we obtain also the equations for NLO 3-quark function S,

NNLO 2-quark function 552) and the equation for NNNLO correction to
the quark propagator S(®), which matter the forms (15), at n = 3, n = 2,

n =1, accordingly.

Figure 20.

Jafarov R.G.:lzv. Akad. nauk Azerb. v.XXVI, No2:3, 2006. J




Section 7. The formalism of other type sources

In this last Section we consider the generalization of MFE of Section 2,
which includes other types of multi-quark sources except of bilocal source
1. Such generalization can be useful for the description of baryons in the
framework of MFE.

R.G. Jafarov and V.E. Rochev: Talk given in QUARKS-2010 16th
International Seminar on High Energy Physics Kolomna, Russia, 6-12
June, 2010;

Aydan A. Garibli, Rauf G. Jafarov, and Vladimir E. Rochev Mean-Field
Expansion, Regularization Issue, and Multi-Quark Functions in
Nambu—Jona-Lasinio Model :Symmetry 11 (2019) 5, 668.




Subsection 7.1. The formalism with diquark sources

Firstly, consider the formalism with diquark sources. For this purpose, we
add two diquark-source terms £ and £ in the exponent of Eq. (11) for

generating functional G:
G169 = [ D) expif [ oL~ [ dudybiniy. o)t +
+ [ dordoab(en)da(on ) + [ dndzatlon, z2)vta)ie) . (29)

With these sources SDE (10) is modified as follows:

0G0, |G a0 G
GJrz@% Jrzg{%tr {57]] — YT 6—ntr [757' &7}} =



Subsection 7.1. The formalism with diquark sources

We have, apart from SDE (24), the additional SDE, which generates by
new sources:

-0G L .9, 3G
05 +ig {65 [&J 657”[”57 577}}
G _

It should be noted, that the presence of the new diquark source leads to
the connection condition for derivatives of generating functional:
2 2
L i CA— (26)
6&(z2, x1)0n(y, ) 6&(x1, 2)on(y, x2)

Due to this connection condition SDE (25) can be rewritten in the
alternative forms. These alternative forms, being fully equivalent from the
point of view of an exact solution of SDE's, can lead to different
approximations in the MFE. The choice of the suitable forms for the
construction of MFE in the case should be made with an assistance of
corresponding physical reasons.




Subsection 7.2. The formalism with triple-sources

In the very similar manner one can introduce 3-quark, or baryon sources.
These sources can be used for the direct description of nucleons and other
baryons omitting the intermediate diquark modelling. The generating
functional with anti-commutative three-quark sources ¢ and C is

G(n,¢,¢) =/D(w,@expi{/dﬂ—/dxdyzﬁ(y)n(y,x)w(w)Jr
—|—/dl‘ldl'gdl'gl/j(1‘1)1[;(582)1[;(133)((561,1‘2,ZE3)+

+ / dmldxgdng(xh Tg, mg)w(xl)w(ﬂ?Q)w(l'g)} (27)



Subsection 7.2. The formalism with triple-sources

The master-equations for generating of SDEs are follows
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Subsection 7.2. The formalism with triple-sources
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Subsection 7.2. The formalism with triple-sources

SDE (10) with 3-quark sources is modified as follows:

206G 6 [6G 0 0 G
G+ 28% + zg{%tr {577] — YT %tr [757 577} } =
0G 0G
=nx— -3 %(. 2
n* 5 3 5€ *xC (28)
As above, apart from SDE (28), the additional SDE exists, which
generates by the 3-quark sources:

zéﬁ—i-z {itr E - Tait’l“ 7"ZE }—
56 g (55 5?7 V5 55 V5 577 -

¢ (29)

The connection condition for the derivatives of the generating functional,
which is very similar to the condition(26), also exists in the

three-quark-source formalism, and also leads to alternative forms of
SDE(29).




Section 7

The method of the construction of MFE for these system of equations is
similar to that of Section 2.
An analysis of this construction is the object of future investigations!.
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