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Never do anything against conscience
even if the state demands it
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Introduction and Summary

Ever since of success of the Feynman formalism in QED, corresponding
�eld-theoretic formulations have been in the forefront of strong
interaction dynamics since the early �fties of past century, the main
strategy being to device various 'closed' form of approaches which are
represented as appropriate 'integral' equations. One of the earliest e�orts
in this direction was the Tamm-Danco� formalism,

I.E. Tamm:J. Phys. 9:449, 1945;
S.M. Danco�:Phys. Rev. 78:382, 1950

which showed a great intuitive appeal. See also

V.P. Silin, I.Y. Tamm, V.Ya. Fainberg: ZhETF 29:6, 1955.



Introduction and Summary

The 3D Tamm-Danko� equation and the 4D Schwinger-Dyson equation
(SDE) have been the source of much wisdom underlying the formulation
of many approaches to strong interaction dynamics. To these one should
add the Bethe-Salpeter equation (BSE),

E.E. Salpeter and H.A. Bethe: Phys. Rev. 84:1232, 1951

which is an approximation to SDE for the dynamics of a 4D 2-particle
amplitude, characterized by an e�ective interaction, for the N-N
interaction, but now adapted to the quark level.
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and to Logunov-Tavkhelidze Quasi-potential equation

A.A. Logunov and A.N. Tavkhelidze: Nuovo Cimento 29:380, 1963

and Kadyshevsky formalism:

V.G. Kadyshevsky: Sov Phys. JETF 19:443;597, 1964,; Nucl. Phys.
B6:125, 1968,;
C. Itzikson, V.G. Kadyshevsky, I.T. Todorov: Phys. Rev. D1:2823, 1970.



Introduction and Summary

The report is organized as follows:
In sections 2-3 we results the solutions of ladder perturbative BSE. And
discuss about multi-fermion equations in QED.
In Section 4 we describe the method of construction of the MFE with the
fermion bilocal source for the NJL model with the SU(2)�symmetric
4-quark interaction and, for the sake of completeness, consider the
well-known leading approximation results of this model. Also in this
section we investigate the �rst-after-leading step of the iteration scheme,
which gives us the equations for the leading order 2-particle Green
function and NLO correction to the propagator of quarks.
In Section 5 we describe the second step of the iteration scheme. As a
result we obtain the equations for 4-quark Green function and for the
3-quark Green function. We also obtain in this step the equations for
NLO 2-quark function and NNLO correction to quark propagator. We
discuss the structure of second step equations and obtain the solutions of
4-quark and 3-quark equations.
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In Section 6 we describe the 3th step of iteration scheme. As a result we
obtain the equations for 6-quark Green function and for the 5-quark
Green function, and, the NLO equations for 4-quark and 3-quark Green
functions. We also obtain in this step the equations for NNLO 2-particle
function and NNNLO correction to quark propagator.
In Section 7 the modi�cation of the MFE for the NJL model in the
formalism with the multilocal diquark and triple-quark sources is brie�y
discussed.



Section 2. The ladder Bethe-Salpeter equations and their

possible solutions

The ladder approximation in method of BSE for the scattering amplitude
in �eld theory models was originally used justify Regge behavior at high
energies

B.A. Arbuzov, A.A. Logunov, A.N. Tavkhelidze, R.N. Faustov: Phys.
Lett. 2:150, 1962;
J.C. Polkinghorne: J. Math. Phys.4:503, 1963;
D. Amati, S. Fubini, A. Stanghellini: Nuovo Cim.26:896, 1962;
L. Bertocchi, S. Fubini, M. Tonin: Nuovo Cim.25:626, 1962

and was the point of departure in the construction of the multi-peripheral
model.
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Di�erent methods have been used to obtain exact solutions of ladder
BSE for forward scattering amplitude in a number of models and other
works by B.A. Arbuzov and Co

B.A. Arbuzov, V.E. Rochev: Yad.Fiz. 21:883, 1975;
B.A. Arbuzov, V.Yu. Diakonov, V.E. Rochev: Yad.Fiz. 23:904, 1976;
K.G. Klimenko, V.E. Rochev: Yad.Fiz. 31:448, 1980;
V.Yu. Diakonov: TMF 43:218, 1980
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In particular for ladder BSE for imaginary part of scattering amplitude
p+ p′ = k + k′

F (s, t) = πλ2δ(s−µ2)+
πλ2

(2π)4

∫
d4q

θ(s′ − q0)δ(q
2 − µ2)

[(p− q)2 −m2][(k − q)2 −m2]
F (s′, t)

(1)

Here s = (p+ p′)2, s′ = (p+ p′ − q)2, t = (p− k)2 and µ is exchange
mass, and m0 is the mass in other propagators,
d4q = dq0|−→q |d|−→q |dcosθdφ.



Section 2. Forward scattering:

In these works to �nd via di�erent mathematical way (the inverse Mellin
transformation,a and/or via diagonalized way by means of an expansion
in Gegenbauer polinomial and at t = 0 - only forward scattering, in
common approximately in form

F (s′) = C(g2, α)(
s

m2
)α,

where g2 = λ2

32π2m2 , and Regge parameter α has the form

α = −1

2
+

√
1

4
+ g2.

Such result lead us to idea, which consist in �nding the solution in
starting as Regge form of behavior of scattering amplitude.



Subsection 2.1. Easy way for solution of ladder BSE for

imaginary part of forward scattering amplitude

Let us to introduce in kernel of integral (1) a one as integral
1 =

∫
δ((p+ p′ − q)2 − s′)ds′. In case of forward scattering p = k,

p′ = k′ and p2 = m2, the integration with respect to φ, dcosθ, dq0 and

d|−→q | in c.m.s. |−→p |+ |
−→
p′ | = 0 is trivial. The result is

F (s) =
π2λ2

2(2π)4m2

∫
d(
s′

s
)

(1− s′

s )F (s
′)

(1− s′

s )
2 + µ2

m2

Let us to �nd the solution as

F (s) = sα.

The result of integration is the sum of two hypergeometric equations

64π2µ2 (α+ 1)(α+ 2)

λ2
= F (1, 2;α+3;−im

µ
) +F (1, 2;α+3; i

m

µ
). (2)



Subsection 2.1. Forward scattering

1) In case m << µ,

α = −3

2
± 1

2

√
1 +

λ2

8π2µ2
.

2)At µ << m

α = −n± (−32π2m2

λ2
+

1

2
ln
µ2

m2
), n = 1, 2, 3, ....

S.A. Gadjiev, R.G. Jafarov: Dokl.AN Azerb. , v.XLII: Nî11: 20, 1986;
S.A. Gadjiev, R.G. Jafarov: Dokl.AN Azerb. , v.XLIII: Nî1:34, 1987.



Subsection 2.2. Small momentum transfers

The Eq.(1) after the integration with respect to φ, dcosθ, dq0 and d|−→q |
in c.m.s. |−→p |+ |

−→
p′ | = 0, in case p = k, p′ = k′ and p2 = m2 and

k2 = m2 receive the form

F (s, t) =
π2λ2

8(2π)4|−→p |2
√
s
√

(s−s′+µ2)2

4s − µ2

·

·
∫
ds′dz

F (s′, t)

(β + z)(z2 + 2βz0z + β2 + z02 − 1)1/2
,

where z = cosθ, z0 = cosθ0, θ0-the scattering angle and

β = µ2−s+s′

4|−→p |
√

(s−s′+µ2)2

4s −µ2
.

Let us take in place z0 = 1 + ϵ, where ϵ << 1 and to expand to series.
We �nd the solution as F (s, t) = sα,t. The result of integrations is

64π2µ2 (α+ 1)(α+ 2)

λ2(1 + t
6m2 )

= F (1, 2;α+3;−im
µ
) +F (1, 2;α+3; i

m

µ
). (3)



Subsection 2.2.

1) In case m << µ,

α = −3

2
± 1

2

√
1 +

λ2

8π2µ2
(1 +

t

6m2
).

2)At µ << m

α = −n± (− 32π2m2

λ2(1 + t
6m2 )

+
1

2
ln
µ2

m2
), n = 1, 2, 3, ....

In case t = 0 all results have exact co-ordinate with results of forward
scattering.

S.A. Gadjiev, R.G. Jafarov: Krat. Soobsh. po Fizike FIAN, No11:25, 1986.
S.A. Gadjiev, R.G. Jafarov, A.I. Livashvili: Izvest. Vuzov. Fizika No5:49,
1989.



Section 3. Multi-particle equations

The multi-particle (three or more particle) generalizations of the 4D BSE
have been studied in detail. A straightforward generalization of
two-particle BSE has bee intensively studied in sixties-seventies of last
century. A best exposition of these studied can be found in the work of
Huang and Weldon

K. Huang and H.A. Weldon: Phys. Rev.D11:257, 1975.

These generalizations are based on the analysis of Feynman diagrams, and
all statements have a perturbative sense only. A form of the equations
was chosen arbitrary. An additional disadvantage of the diagrammatic
method is the fact almost all propositions can be formulated in words and
cannot be formalized. The above-mentioned di�culties cannot be
resolved in the framework of the diagramma. However, the natural
language exists for the description multi-particle equations in the
framework of the Lagrangian �eld theory. There are Legendre
transformations of the generating functional for the Green's functions.
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Functional Legendre transformations were �rstly introduced in quantum
statistics and applied to the quantum �eld theory

Quantum Field Theory and Quantum Statistics (Essays in Honour of the
sixtieth birthday of E.S. Fradkin) (Eds. I.A. Batalin, Ñ. Isham, and G.A.
Vilkovisky) Vols 1 and 11 (Bristol: Adam Hilger, 1987);
Rochev V.E.:Teor. Mat. Fiz. 51:22, 1982.

With these transformations one can obtain multi-particle equations as a
consequence of Schwinger ones. These multi-particle equations are
model-independent, and they do not depend on perturbation theory.
A number of perspective physical applications of the e�ective models are
connected with multi-particle functions, which are, in the main, the
subject of present report.



Section 3.1. New non-perturbative method in QED and the

multi-fermion equations

The problem of nonperturbative calculations in QED arose practically
simultaneously with the principal solution of the problem of perturbative
calculations with based on renormalized coupling constant perturbation
theory. It is necessary to recognize, however, that the progress in the
nonperturbative calculations during last decades is not to large. A new
approach to nonperturbative calculations in quantum electrodynamics is
proposed in work

Rochev V.E.:J.Phys. A33:7379, 2000.



Section 3.1.

This approach is based on a regular iteration scheme for the solution of
Schwinger-Dyson equations for generating the functional of Green
functions of QED by an exactly soluble equation. Its solution generates a
linear iteration scheme each step of which is described by a closed system
of integro-di�erential equation.
Note that equations of Green function at leading approximation and at
the �rst step of iteration scheme in two versions. First of them on the
language of Feynman diagrams of perturbative theory is analog of
summation of chain diagrams with fermion loop.
The second version of the iteration scheme can be compared on the
diagram language a ladder summation. The generating functional has the
form

G(J, η) =

∫
D(ψ, ψ̄, A)expi{

∫
(L+Jµ(x)Aµ(x))−

∫
dxdyψ̄βηβα(y, x)ψα(x)}.



Section 3.1.

Functional derivatives of G with respect to sources are vacuum
expectation values. SDEs for the generating functional of Green functions
of QED has the forms:

(gµν∂
2 − ∂µ∂ν +

1

dl
∂µ∂ν)

1

i

δG

δJν
+ ietr

[
γµ
δG

δη

]
+ JµG = 0, (4)

G+ (i∂̂ −m)
δG

δη
+
e

i
γµ

δ2G

δJµη
− η ⋆

δG

δη
= 0. (5)

In correspondence with the choice of the leading approximation i-th term
of the iteration expansion of the generating functional

G = G(0) +G(1) +G(2) + · · ·, (6)

which is solution of iteration scheme equations. A solution of equations
(4), (5) is looked in the form:

G(i) = P (i)G(0).



Subsection 3.1.1. Chain approximation

Since P (0) ≡ 1, it is evident that for any ”i” the functional P (i) is a
polynomial in functional variables J and η. This circumstance is very
important since it means the system of equations for coe�cient functions
of this functional take closed in any order of the iteration scheme.
This iteration scheme has no explicit small parameter. In some sense, the
sources J and η play the role of such a parameter. Expansion (6) of the
generating functional should be treated as an approximation of G(J, η)
near the point Jµ = 0, η = 0.
The iteration equation for the generating functional of Green functions of
chain approximation in switching o� photon sources Jµ = 0 has the form:

G(i)+(i∂̂−m0)
δG(i)

δη
−ie2{Dµν ⋆γµ

δ

δη
tr[γν

δG(i)

δη
]} = η⋆

δG(i−1)

δη
. (7)

The solution of �rst step equation is

G(1) =

{
1

2
S2 ⋆ η

2 + S(1)

}



Subsection 3.1.1.

Let us use the following Feynman graphical rules

Figure 1.

we obtain the BSE in chain approximation

Figure 2.



Subsection 3.1.1.

as means as series (see Fig.2)

Figure 3.

The second step generation functional is

G(2)(η) = P (2)(η)G(0), (8)

where

P (2) =
1

4!
S4 ⋆ η

4 +
1

3!
S3 ⋆ η

3 +
1

2
S
(1)
2 ⋆ η2 + S(2) ⋆ η.



Subsection 3.1.1.

The second iteration step contains the equations for the 4 S4- and 3 S3

functions and also the equations for the �rst order correction to

2-fermion function S
(1)
2 and 2-order correction equation to electron

propagator S(2). For these 4 functions we have a system of four integral
equations, which , and all equations, (also for next, ladder approximation
equations) posses the similar structure.

Sn = S0
n − ie2

{
(Dc

µν ⋆ S · γµS) ⋆ tr[γνSn]
}

and di�er from each other by the structure of inhomogeneous terms S0
n.



Subsection 3.1.1.

The inhomogeneous term S0
4 for 4-electron function is

S0
4 = −3 · {S · S · S2},

where S2 is very well known form.

Figure 4.



Subsection 3.1.1.

The inhomogeneous term of 3-electron equation is

S0
3 = −2 · {S · S · S(1)} − 2 · {S · S2} − ie2

{
(Dc

µν ⋆ Sγµ) ⋆ tr[γνS4]
}
.

Here S(1) is �rst step correction electron function, which is de�ned in
preceding step.

Figure 5.



Subsection 3.1.1.

The inhomogeneous term of the �rst order correction for two-electron
function has the following form

(S
(1)
2 )0 = −{S · S(1)} − ie2

{
(Dc

µν ⋆ Sγµ) ⋆ tr[γνS3]
}
,

Figure 6.

and the inhomogeneous term of second-order correction for single
electron function absence

Figure 7.



Subsection 3.1.2. Ladder BSE

As we note the leading order and �rst step equations are very well known

Rochev V.E.:J.Phys. A33:7379, 2000.

Here we would like to demonstrate the solution of ladder BSE for
two-electron bound state and the constructing of second order equations.

Jafarov R.G.:Izv. Akad. nauk Azerb. 25, No5:19, 2005;
Gadjiev S.A., Jafarov R.G.:Izv. Akad. nauk Azerb. 26, No5:20, 2006.

This step leads us very to well known two-electron function equation is

S2 = −S · S +K ⋆ S2

where K = ie2{tr[Dµν ⋆ SSγµS2γνS], } is the kernel of equation.



Subsection 3.1.2. Ladder BSE

The equation for �rst step electron propagator is

S(1) = ie2Dc
µν ⋆ SγµS2γν + ie2Dc

µν ⋆ SγµS
(1)γνS

which have a following graphical form



Subsection 3.1.2. Ladder BSE

BSE in momentum space is

S−1 · S2 · S−1 = 1 · 1 + ie2Dc
µν ⋆ γµS2γν

Figure 10.

The BSE for bound states is

S−1χαβS−1 = ie2Dc
µν ⋆ γµχ

αβγν

Figure 11.



Section 4. Mean-�eld expansion for Nambu�Jona-Lasinio

model and the multi-quark functions

A number of perspective physical applications of the e�ective models are
connected with multi-quark functions, which are the subject of present
report. The basic method of calculations is a formalism of multi-local
(double, triple, etc.) sources

Aydan A. Garibli, Rauf G. Jafarov, and Vladimir E. Rochev Mean-Field
Expansion, Regularization Issue, and Multi-Quark Functions in
Nambu�Jona-Lasinio Model :Symmetry 11 (2019) 5, 668.

As an object of application of the method we choose Nambu -
Jona-Lasinio (NJL) model
This model is one of the most successful e�ective models of quantum
chromodynamics for the light hadrons. For review see

Klevansky S.P.:Rev. Mod. Phys. 64:649, 1992;
Hatsuda T. and Kunihiro T.:Phys. Reports 247:221, 1994;
Volkov M.K., Radjabov A.E.:Uspekhi Fiz. Nauk 176:569, 2006.

.



Section 4.

It is necessary to note, that this method has been successfully applied for
the other �eld-theoretic models and can be applied also for analogous
calculations in other similar e�ective models.
The multi-quark functions arise in higher orders of the MFE for the NJL
model. To formulate the MFE we have used an iteration scheme of
solution of the Schwinger-Dyson equation with the fermion bilocal
source, which has been developed in works by Rochev. We have
considered the equations for Green functions of the NJL model up to the
third order of the MFE. The leading approximation and �rst order of the
MFE maintains equations for the quark propagator and the 2-quark
function and also the NLO correction to the quark propagator. The
second order of MFE includes the equations for the 4-quark and the
3-quark functions and also the equations for the NLO 2-quark function
and NNLO quark propagator.



Section 4.

Furthermore we have considered the generalization of the method in the
framework of the NJL-type models, which includes the other multi-local
sources (speci�cally, the diquark and 3-quark sources).
We have found a solution of the 4-quark and 3-quark equations. The
solution of the 3-quark function is a disconnected combination of the
leading-order functions and, consequently, the corresponding physical
e�ects (i.e., pion-pion scattering) are suppressed in this order of the
MFE. Therefore, we also investigate the third step of iterations, which
gives us the equations for the 6-quark and 5-quark functions and the
equations for the NLO 4-quark and 3-quark functions. The solution of
the 6-quark functions equation has the disconnected form, which is
similar to the solution for the 4-quark function of the preceding step.
The solution of the second-step four-quark equation gives us a possibility
to close the equation for the 3-quark function.



Subsection 4.1. The method. Leading order and �rst step

equations

The Lagrangian of the 2-�avor NJL model may be written in the
well-known form

L = ψ̄i∂̂ψ +
g

2

[
(ψ̄ψ)2 + (ψ̄iγ5τ

aψ)2
]
. (9)

To construct the MFE we use an iteration scheme of the solution of
functional-di�erential SDE

G+ i∂̂
δG

δη
+ ig

{ δ

δη
tr

[
δG

δη

]
+ iγ5τ

a δ

δη
tr

[
iγ5τ

a δG

δη

]}
= η ⋆

δG

δη
(10)

for the generating functional G of Green functions.



Subsection 4.1.

The generating functional G can be represented as the functional integral
with bilocal fermion source η:

G(η) =

∫
D(ψ, ψ̄) exp i

{∫
dxL−

∫
dxdyψ̄(y)η(y, x)ψ(x)

}
. (11)

We shall solve Eq. (10) employing the method which proposed in work by

Rochev V.E.Jafarov R.G.:Central Eur. J. Phys. 2:367, 2004
(arXiv:hep-ph/0311339).

The solution of the equation of leading approximation,i.e., the
functional-di�erential SDE (10) with zero r.h.s., is the following

functional G(0) = exp
{
Tr

(
S ⋆ η

)}
, where S is solution of the equation

1 + i∂̂S + igS · tr[S(0)] = 0. (12)



Subsection 4.1.

The leading approximation generates the linear iteration scheme

G = G(0) +G(1) + · · ·+G(n) + · · · ,

consists in the step-by-step solutions of the equations

G(n)+i∂̂
δG(n)

δη
+ig

{ δ

δη
tr

[
δG(n)

δη

]
−γ5τa

δ

δη
tr

[
γ5τ

a δG
(n)

δη

]}
= η⋆

δG(n−1)

δη
.

(13)
Functional G(n) is G(n) = P (n)G(0), where P (n) is a polynomial of 2n
-th degree on the bilocal source η.
The unique connected Green function of the leading approximation S is
the quark propagator. A solution of Eq. (12) is

S(p) = (m− p̂)−1,

where m is the dynamical quark mass, which is a solution of the gap
equation of the NJL model in the chiral limit.



Subsection 4.1.

The other connected Green's functions appear in the subsequent steps of
the iterative scheme.
The �rst iteration step contains the leading-order equation for the
2-particle S2 quark function

S2 = −S · S +K ⋆ S2 (14)

K = ig
{
(S · S) ⋆ tr[S2]− (Sγ5τ

aS) ⋆ tr[γ5τ
aS2]

}
is the kernel of

equation

Figure 12.

and �rst order quark function equation

Figure 13.



Section 5. Second step equations

The second step contains the equations for the four S4- and 3-particle S3

functions and also the equations for the two-particle function S
(1)
2 and

the second-order corrections to the quark propagator S(2). For these 4
functions we have a system of four integral equations. All these equations
(and all equations of following steps of the iteration scheme) possess the
structure, which is similar to the structure of Eq. (14):

Sn = S0
n + ig

{
(S · S) ⋆ tr[Sn]− (Sγ5τ

a · S) ⋆ tr[γ5τaSn]

}
, (15)

Figure 14.

and di�er from each other by the structure of inhomogeneous terms S0
n.



Section 5. Second step equations

The inhomogeneous term in the equation for 4-quark function S4 is

S0
4 = −3 ·

{
S · S · S2

}
, (16)

where S2 is de�ned in preceding section by Eq. (14).

Figure 15.



Section 5. Second step equations

The inhomogeneous term in the equation for 3-quark function S3

S0
3 = −2

{
S ·S ·S(1)

}
−2·

[
S ·S2

]
+ig ·S⋆

{
tr[S4]−γ5τtr[γ5τS4]

}
. (17)

Figure 16.



Section 5. Second step equations

The solution of 4-quark equation is the sum of products of 2-quark
functions S2:

S4 = 3 ·
{
S2 · S2

}
(18)

Figure 17.

R.G. Jafarov and V.E. Rochev: Proceedings of the XXVIII International
Workshop on the FPHEP and Field Theory(2005), New Physics at
Colliders and Cosmic Rays, Moscow Region, Protvino, p.27-33, 2005 and
in Proceedings of Workshop LHP06, Tehran, Iran, 2006 (arXiv:
hep-ph/0609183).



Section 6. Structure of third step of iteration step equations

As we have showed above the equation for the 4-quark function S4 has a
simple exact solution which is the product of �rst-order 2-quark functions
(see Eq. (18)). As it seen from this solution, the pion-pion scattering in
NJL model is suppressed, i.e. in the second order of MFE this scattering
is absent. This process arises in the third order of our iterative scheme,

i.e. in NLO 4-quark function S
(1)
4 .

The third-step generating functional is

G(3) [η] =

{
1

6!
Tr
(
S6 ∗ η6

)
+

1

5!
Tr
(
S5 ∗ η5

)
+

1

4!
Tr
(
S
(1)
4 ∗ η4

)
+

1

3!
Tr
(
S
(1)
3 ∗ η3

)
+

1

2
Tr
(
S
(2)
2 ∗ η2

)
+ Tr

(
S(3) ∗ η

)}
G(0).

R.G. Jafarov: Fizika Azerb NAS, XI, No 3:27,2005.



Section 6. Structure of third step of iteration step equations

After standard operations we obtain the equations for six-quark function
S6 and for 5-quark function S5. Inhomogeneous terms are following:

S0
6 = 5 ·

{
−S · S · S4

}
(19)

Figure 18.



Section 6. Structure of third step of iteration step equations

and

S0
5 = −4·

{
S ·S ·S3·

}
−4·

[
S ·S4

]
+ig

{
tr

[
S⋆S6

]
−tr

[
Sγ5τ

a⋆S6γ5τ
a

]}
,

(20)
accordingly. The equations for 6-quark function and for the 5-quark
function with inhomogeneous term (19) and (20) in our iteration scheme
are new. The third step of iterative scheme gives us the equation for

4-quark function (S
(1)
4 ).

Figure 19.



Section 6. Structure of third step of iteration step equations

As we note above the structure of this equation have are the form (15)
with following inhomogeneous term

(S
(1)
4 )0 = −3·

{
S·S·S(1)

2

}
−3·

[
S·S3

]
+ig

{
tr

[
S⋆S5

]
−tr

[
Sγ5τ

a⋆S5γ5τ
a

]}
.

(21)

The equation for NLO 4-quark function S
(1)
4 gives us possibility to

describe the pion-pion scattering in quark �elds context. The

inhomogeneous term (21) of equations for 4-quark function S
(1)
4 contains

5-quark function S5, three-quark function S3 and 2-quark function S
(1)
2 .

The inhomogeneous term (20) for 5-quark equation include the 6-quark
function S6, 4-quark function S4 and 3-quark function S3. Before the

investigation of four-quark function S
(1)
4 it is necessary to �nd the

solution of equation for 6-quark function S6, because the inhomogeneous
part (20) includes function S6. Also it is necessary to �nd a solution of

equation for NLO 2-quark function S
(1)
2 .



Section 6. Structure of third step of iteration step equations

The solution of six-quark equation is the sum of products of 2-quark
functions S2 and 4-quark functions S4:

S6 = 5 ·
{
S2 · S4

}
(22)

Figure 20.

In this step we obtain also the equations for NLO 3-quark function S
(1)
3 ,

NNLO 2-quark function S
(2)
2 and the equation for NNNLO correction to

the quark propagator S(3), which matter the forms (15), at n = 3, n = 2,
n = 1, accordingly.

Jafarov R.G.:Izv. Akad. nauk Azerb. v.XXVI, No2:3, 2006.



Section 7. The formalism of other type sources

In this last Section we consider the generalization of MFE of Section 2,
which includes other types of multi-quark sources except of bilocal source
η. Such generalization can be useful for the description of baryons in the
framework of MFE.

R.G. Jafarov and V.E. Rochev: Talk given in QUARKS-2010 16th
International Seminar on High Energy Physics Kolomna, Russia, 6-12
June, 2010;
,
Aydan A. Garibli, Rauf G. Jafarov, and Vladimir E. Rochev Mean-Field
Expansion, Regularization Issue, and Multi-Quark Functions in
Nambu�Jona-Lasinio Model :Symmetry 11 (2019) 5, 668.



Subsection 7.1. The formalism with diquark sources

Firstly, consider the formalism with diquark sources. For this purpose, we
add two diquark-source terms ξ and ξ̄ in the exponent of Eq. (11) for
generating functional G:

G(η, ξ, ξ̄) =

∫
D(ψ, ψ̄) exp i

{∫
dxL−

∫
dxdyψ̄(y)η(y, x)ψ(x) +

+

∫
dx1dx2ψ̄(x1)ψ̄(x2)ξ(x1, x2) +

∫
dx1dx2ξ̄(x1, x2)ψ(x1)ψ(x2)

}
. (23)

With these sources SDE (10) is modi�ed as follows:

G+ i∂̂
δG

δη
+ ig

{ δ

δη
tr

[
δG

δη

]
− γ5τ

a δ

δη
tr

[
γ5τ

a δG

δη

]}
=

= η ⋆
δG

δη
+ 2 · δG

δξ
⋆ ξ. (24)



Subsection 7.1. The formalism with diquark sources

We have, apart from SDE (24), the additional SDE, which generates by
new sources:

i∂̂
δG

δξ̄
+ ig

{ δ

δξ̄
tr

[
δG

δη

]
− γ5τ

a δ

δξ̄
tr

[
γ5τ

a δG

δη

]}
=

= η ⋆
δG

δξ̄
− 2 · ξ̄ ⋆ δG

δη
. (25)

It should be noted, that the presence of the new diquark source leads to
the connection condition for derivatives of generating functional:

δ2G

δξ̄(x2, x1)δη(y, x)
= − δ2G

δξ̄(x1, x)δη(y, x2)
. (26)

Due to this connection condition SDE (25) can be rewritten in the
alternative forms. These alternative forms, being fully equivalent from the
point of view of an exact solution of SDE's, can lead to di�erent
approximations in the MFE. The choice of the suitable forms for the
construction of MFE in the case should be made with an assistance of
corresponding physical reasons.



Subsection 7.2. The formalism with triple-sources

In the very similar manner one can introduce 3-quark, or baryon sources.
These sources can be used for the direct description of nucleons and other
baryons omitting the intermediate diquark modelling. The generating
functional with anti-commutative three-quark sources ζ and ζ̄ is

G(η, ζ, ζ̄) =

∫
D(ψ, ψ̄) exp i

{∫
dxL−

∫
dxdyψ̄(y)η(y, x)ψ(x)+

+

∫
dx1dx2dx3ψ̄(x1)ψ̄(x2)ψ̄(x3)ζ(x1, x2, x3)+

+

∫
dx1dx2dx3ζ̄(x1, x2, x3)ψ(x1)ψ(x2)ψ(x3)

}
. (27)



Subsection 7.2. The formalism with triple-sources

The master-equations for generating of SDEs are follows

0 =

∫
D(ψ, ψ̄)

δ

δψ̄α(x)cj
ψ̄β(y)dk×

× exp i

[∫
dxL−

∫
dxdyψ̄(y)η(y, x)ψ(x)+

+

∫
dxdydzξ̄(xyz)ψ(x)ψ(y)ψ(z) +

∫
dxdydzψ̄(x)ψ̄(y)ψ̄(z)ξ(xyz)

]
,

0 =

∫
D(ψ, ψ̄)

δ

δψ̄α1(x1)
c1
j1

ψα3(x3)
c3
j3
ψα2(x2)

c2
j2
×

× exp i

[∫
dxL−

∫
dxdyψ̄(y)η(y, x)ψ(x)+

+

∫
dxdydzξ̄(xyz)ψ(x)ψ(y)ψ(z) +

∫
dxdydzψ̄(x)ψ̄(y)ψ̄(z)ξ(xyz)

]
.



Subsection 7.2. The formalism with triple-sources

i.e.

ψ̄β(y)dk ψ
α(x)cj → i

δ

δηβα(y, x)dckj
,

ψγ(z)elψ
β(y)dk ψ

α(x)cj → −i δ

δξ̄γβα(zyx)edclkj

,

ψ̄γ(z)el ψ̄
β(y)dk ψ̄

α(x)cj → i
δ

δξγβα(zyx)edclkj

.



Subsection 7.2. The formalism with triple-sources

SDE (10) with 3-quark sources is modi�ed as follows:

G+ i∂̂
δG

δη
+ ig

{ δ

δη
tr

[
δG

δη

]
− γ5τ

a δ

δη
tr

[
γ5τ

a δG

δη

]}
=

= η ⋆
δG

δη
− 3 · δG

δξ
⋆ ζ. (28)

As above, apart from SDE (28), the additional SDE exists, which
generates by the 3-quark sources:

i∂̂
δG

δζ̄
+ ig

{ δ

δζ̄
tr

[
δG

δη

]
− γ5τ

a δ

δζ̄
tr

[
γ5τ

a δG

δη

]}
=

= η ⋆
δG

δζ̄
+ 3i · δ

2G

δηδη
ζ̄. (29)

The connection condition for the derivatives of the generating functional,
which is very similar to the condition(26), also exists in the
three-quark-source formalism, and also leads to alternative forms of
SDE(29).



Section 7

The method of the construction of MFE for these system of equations is
similar to that of Section 2.
An analysis of this construction is the object of future investigations!.
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