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Introduction

Vacuum instability due to the production of real particles under the
action of a strong external field = the Schwinger effect; see Physics Subject
Headings (new classification scheme is now being used by Phys. Rev. The effects of an intense
electric field have been essential for a number of realistic models of
high-energy physics, astrophysics, and physics of nanostructures;
recent reviews [A. Fedotov et al, Phys. Rep. 1010, 1-138 (2023)] For a number of recently
created nanomaterials (graphene, topological insulators, Dirac and
Weyl semimetals), the dynamics of massless electronic excitations
at low energies is described by the Dirac model.
It turn out that the magnon EFT that describes antiferromagnets
is relativistic-like. The concept of the Dirac materials can also be
applied to materials with Bose-Einstein statistics for
quasiparticle excitations. The physics that corresponds to the
production of near massless particles in these materials is
different, but its typical manifestations at low energies have
similar kinematics.
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EFT model

The EFT model describing low-energy dynamics of magnons can
be represented as a relativistic model of a charged scalar field, the
mass of which is determined by the sum of the potential of the
easy axis and the ratio of the parameters of magnetization and
condensation. The magnetic field gradient acts on magnons in the
same way as a constant electric field acts on charged scalar
particles, ∂xA0 = ∂xB.
The system consists of localized spins which live on sites of a
cubic-type lattice. These sites are numbering by the index n. The
corresponding spin vector operators are denoted by ŝn. The
Hamiltonian (the "Bose—Hubbard model") reads:

Ĥspin = −∑
n

d

∑
i=1
Jδab ŝna ŝ

n+ı̂
b −∑

n

[
µBa (rn) ŝna + C

ab ŝna ŝ
n
b

]
,

([ŝna , ŝ
n
b ] = iε

c
ab ŝ

n
c ); J > 0 is the antiferromagnetic interaction

coupling constant. C ab ŝna ŝ
n
b , is the single-ion anisotropic

interaction (a product of the quenching of the orbital moment by the crystalline field).
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EFT model

In the leading order of the derivative expansion at low-energies the
SO(3) gauge invariant effective Lagrangian can be written as:

L = f 2t
2
(D0na)

2 − f
2
s

2
(∂ina)

2 + rC abnanb ,

where the covariant derivative D0 with the SO(3) background
gauge field is defined as:

D0na = ∂0na − εabc n
bµBa, ∂0 =

∂

∂t

and low-energy parameters ft , fs , and r can be determined from
the underlying lattice model by the matching condition.
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EFT model

Suppose that our spin system possesses a potential with an
easy-axis anisotropy and develops the collinear ground state. We
apply an inhomogeneous magnetic field along the spin direction of
the ground state. We assume that the magnetic field points to the
direction of axis z and depends on the coordinate x ,
Ba (x) = B (x) δa3, B (x) > 0. This field gives the collinear
ground state with the Néel vector pointing to the direction of axis
z as 〈n〉 = (0, 0, 1). Then one can introduce magnon complex
scalar fields Φ (X ) and Φ∗ (X ) as fluctuations on the top of the
ground state, which parametrize the vector n as

n =
(

Φ+Φ∗√
2

,
Φ−Φ∗√

2i
,
√
1−Φ∗Φ

)
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EFT model

The effective Lagrangian of magnons at the quadratic order of
fluctuation fields around the ground state in the following form:

L(2) = f 2t
(
D0Φ∗D0Φ− ∆2Φ∗Φ

)
− f 2s δij∂iΦ∗∂jΦ,

D0Φ = (∂0 + iU)Φ, D0Φ∗ = (∂0 − iU)Φ∗,

where U = µB and rC ab = 1
2 f
2
t ∆2δa3δb3. The EFT model can be

identified with the scalar QED of a charged complex field Φ (X )
(with µ playing the role of an electric charge) coupled to A0 = B.
Here the energy gap ∆ plays the role of a mass term. The constant
vs = fs/ft (plays the role of the speed of the light) is relatively
small, e.g. ∆ ∼ 1meV and vs ∼ 60m/s for antiferromagnetic
MnF2.
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EFT model

The corresponding wave equation is a modification of the
Klein-Gordon equation,(

D20 − v2s δij∂i∂j + ∆2
)

Φ (X ) = 0,

D0Φ = (∂0 + iU)Φ, U = µB (x)

The EFT model describing low-energy dynamics of magnons can
technically be identified with the scalar QED. In this model, the
magnetic field Ba (x) plays the role of the electric field potential,
Aa0 (x) (an x-step). A complete set with m = (p0,p⊥):

φm (X ) = exp (−iεt + ip⊥r⊥) ϕm (x) , r⊥ = (0, y , z) ,{
v2s ∂2x + [ε− U (x)]

2 − π2⊥

}
ϕm (x) = 0, π⊥ =

√
v2s p2⊥ + ∆2,
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x-case basics

We suppose that all the measurements are performed during a
macroscopic time (say, the time T ) when the external field can be
considered as constant. E (x) = −∂xA0 = −∂xB.

Figure: Capacitor

−∂xB = const > 0, x ∈ Sint = (xL, xR) ;

−∂xB = 0 , x ∈ SL = (−∞, xL] , x ∈ SR = [xR,∞) .
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x-case basics

δU is the magnitude of the x-step,

δU = UL − UR, UL = U (−∞) , UR = U (+∞) .

If δU < 2∆ we deal with noncritical steps: the range Ω3 (Klein
zone) does not exist.
If δU > 2∆ we deal with critical steps: the range Ω3, there
exists the Klein zone.
π0 (L) = ε− UL asymptotic kinetic energy in the region
SL = (−∞, xL],
π0 (R) = ε− UR asymptotic kinetic energy in the region
SR = [xR,∞),
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Solutions of KG equation with special left and right
asymptotics

At left region SL (x < xL) and right region SR (x > xR), the KG
equation has plane wave solutions which satisfy simple dispersion
relations: n = (ε,p⊥)

ζ ϕm (x) ∼ exp
(
ipL x

)
as x ∈ SL, ζ = sgn

(
pL
)
= ± ;

ζ ϕm (x) ∼ exp
(
ipR x

)
as x ∈ SR, ζ = sgn

(
pR
)
= ±,

pR/L =
ζ

vs

√
[π0 (R/L)]2 − π2⊥, π⊥ =

√
p2⊥ +m

2.

The inner product on the hyperplane x = const(
Φ,Φ′

)
x = i

∫ [
Φ′ (X ) ∂xΦ∗ (X )−Φ∗ (X ) ∂xΦ′ (X )

]
dtdr⊥

is conserved. These solutions describe states with given conserved
current along axis x .
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Solutions of KG equation with special left and right
asymptotics

If (Φ,Φ′)x 6= 0, solutions can be subjected to the following
orthonormality conditions(

ζφm , ζ ′φm ′
)
x
= ζδζ,ζ ′δm,m ′ ,

(
ζφm ,

ζ ′φm ′
)
x
= ζδζ,ζ ′δm,m ′ ,

ζN =
∣∣∣2pL

∣∣∣−1/2
Y , ζN =

∣∣∣2pR
∣∣∣−1/2

Y , Y = (V⊥T )
−1/2

Nontrivial solutions ζφm exist only for certain m,

[π0 (L)]
2 > π2⊥ ⇐⇒

{
π0 (L) > π⊥
π0 (L) < −π⊥

.

Nontrivial solutions ζφm exist only for certain m,

[π0 (R)]
2 > π2⊥ ⇐⇒

{
π0 (R) > π⊥
π0 (R) < −π⊥

.
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x-case basics: Ranges of quantum numbers

There exist five ranges Ωk , k = 1, ..., 5 of quantum numbers m
where the solutions have similar asymptotics,

Figure: Potential energy U (x) of a particle in an x-step and ranges of
quantum numbers
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Third range (Klein zone)

Ω3

The Klein zone exists if δU > 2m. Here quantum numbers p⊥ are
restricted by 2π⊥ ≤ δU ,

π0 (L) ≤ −π⊥, π0 (R) ≥ π⊥ if m ∈ Ω3,

and there exist the following two complete sets of solutions{
ζφm (X )

}
,
{

ζφm (X )
}
, ζ = ±.

In contrast to the ranges Ω1 and Ω5, the naive one-particle
interpretation of these solutions becomes erroneous. Approaches
for treating quantum effects in the explicitly time-dependent
external fields are not directly applicable to the critical potential
steps. A consistent nonperturbative formulation of quantum
electrodynamics (QED) with such steps was given recently in
[S.P. Gavrilov and D.M. Gitman, Phys. Rev. D 93, 045002 (2016); Eur. Phys. J. C 80, 820 (2020)
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Decomposition

We assume that each pair ζφm (X ) and
ζφm (X ), with given

m ∈ Ω1 ∪Ω3 ∪Ω5 is complete in the space of solutions with each
n. The corresponding mutual decompositions have the form

ζφm (X ) = +φm (X ) g
(
+

∣∣∣ζ )− −φm (X ) g
(
−
∣∣∣ζ ) ,

ζφm (X ) = +φm (X ) g
(
+
∣∣
ζ

)
− −φm (X ) g

(− ∣∣
ζ

)
,

where coeffi cients g :(
ζφm ,

ζ ′φm ′
)
x
= δm,m ′g

(
ζ

∣∣∣ζ ′ ) , g ( ζ ′
∣∣
ζ

)
= g

(
ζ

∣∣∣ζ ′ )∗
Unitary relations for the decomposition coeffi cients:

g
(

ζ ′ |+
)
g
(
+

∣∣∣ζ )− g ( ζ ′ |−
)
g
(
−
∣∣∣ζ ) = ζδζ,ζ ′ .

To extract results of the one-particle scattering theory, all the
constituent quantities, such as reflection and transmission
coeffi cients etc., have to be represented with the help of the g’s,
that is, the matrix elements of current in x-direction.
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Orthogonality and normalization over space volume

However, it should be noted that QFT deals with physical
quantities that are presented by volume integrals on the
hyperplane t = const.

(
Φ,Φ′

)
≈

∫ xL

−K (L)
Θdx +

∫ K (R)

xR

Θdx ,

Θ =
1
v2s

∫ {
Φ∗ (i∂0 − U)Φ+ [(i∂0 − U)Φ]∗Φ

}
dr⊥,

where the improper integral is reduced to its special principal value,

K (L)/vL −K (R)/vR = O (1) , vL/R = v2s
∣∣∣pL/R/π0 (L/R)

∣∣∣
and the limits K (L/R)/vL/R = T (T → ∞) are assumed in final
expressions. Note in the case under consideration, the potential step with different asymptotics at

x → ±∞ cannot be subjected to any periodic boundary conditions in x -direction without changing its
physical meaning.
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Orthogonality and normalization over space volume

(
ζφm , ζφm

)
=
(

ζφm ,
ζφm

)
= sgn π0 (L/R)Mm if m ∈ Ω1,5;(

ζφm , ζφm
)
= −

(
ζφm ,

ζφm

)
=Mm , Mm = 2

∣∣g (+ ∣∣− )∣∣2 ,(
ζφm ,

ζφm

)
= 0 if m ∈ Ω3, ζφm and ζφm independent.

Then we identify:

in− solutions : +φm1 ,
−φm1 ; −φm5 ,

+φm5 ; −φm3 ,
−φm3 ,

out− solutions : −φm1 ,
+φm1 ; +φm5 ,

−φm5 ; +φm3 ,
+φm3
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x-case basics: Quantization

Ψ (X ) =⇒ Ψ̂ (X ) , Ψ̂ (X ) =
(
iΠ̂† (X )
Φ̂ (X )

)
, Ψ̂ (X ) =

5

∑
i=1

Ψ̂i (X ) ,[
Ψ̂ (X ) , Ψ̂† (X ′)]

−

∣∣∣
t=t ′

= δ
(
r− r′

) ( 0 1
1 0

)
,

Ψ̂3 (X ) = ∑
m∈Ω3

M−1/2
m

[
−am(in) −φm (X ) +

−b†
m(in)

−φm (X )
]

= ∑
m∈Ω3

M−1/2
m

[
+am(out) +φm (X ) +

+b†
m(out) +φm (X )

]
.
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Relations between in- and out-operators

In the range Ω3 (the Klein zone)

+am(out) = g
(− |+ )−1 g (− |− ) −am(in)− g (− |+ )−1 −b†

m(in),
+b†

m(out) = −g
(
−
∣∣+ )−1 −am(in) + g (− ∣∣+ )−1 g (− ∣∣− ) −b†

m(in),

−am(in) = g
(
+ |−

)−1 g (+ |+ ) +am(out) + g
(
+ |−

)−1 +b†
m(out),

−b†
m(in) = g

(
+

∣∣− )−1
+am(out) + g

(
+

∣∣− )−1 g (+ ∣∣+ ) +b†
m(out).

show us that vacuum vectors |0, in〉 and |0, out〉 ,

a(in) |0, in〉 = b(in) |0, in〉 = 0, a(out) |0, out〉 = b(out) |0, out〉 = 0,

are different.
A differential mean number of particles created from vacuum can
be expressed via these coeffi cients as

Ncrn =
〈
0, in

∣∣∣ +a†
m(out) +am(out)

∣∣∣ 0, in〉 = |g (+|−) |−2.
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x-case basics

The total number of pairs Ncr and flux density |jx |:

Ncr = ∑
n∈Ω3

Ncrn = V⊥T |jx | ,

|jx | =
1

(2π)3

∫
Ω3

dεdp⊥Ncrn ,

where V⊥T is transversal space-time volume.
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L-constant gradient

Ncr
n ≈ N0n = e−πλ, λ =

π2⊥
|µB ′| vs

, π⊥ =
√
v2s p2⊥ + ∆2

is quasiconstant over the wide range of the energy ε for any given
λ. Pair creation effects are proportional to the magnitude of
potential step δU = |µB ′| L (the maximum increment of a particle
energy) [S.P. Gavrilov and D.M. Gitman, Phys. Rev. D 93, 045033 (2016)]

(i) L-const. E (x) = −B ′ = const > 0, x ∈ Sint within the
spatial region L and is zero outside of it

Figure: Capacitor
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Peak field

(ii) The Sauter-like magnetic step [S.P. Gavrilov and D.M. Gitman, Phys. Rev. D 93,

045002 (2016)]:

E (x) = −B ′ cosh−2(x/LS), B (x) = LSB ′ tanh (x/LS) , LS > 0;

δU = 2
∣∣µB ′∣∣ LS � 2∆, δULS/vs � 1 − smooth

Ncrn ≈ Nasn = e−πτ, τ = exp
[
−πLS

(
2
∣∣µB ′∣∣ LS/vs −

∣∣∣pR
∣∣∣− ∣∣∣pL

∣∣∣)] ,∣∣∣pR/L
∣∣∣ ≈ v−1s √

|µB ′LS|2 − π2⊥
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Rectangular (the Klein) step

Sharp Sauter potential

δU =
∣∣µB ′∣∣ LS = const� 2∆, δULS/vs � 1 − sharp (the Klein step)

imitates a suffi ciently high rectangular potential step (Klein step)

E

U

x0

Ncrn ≈
4
∣∣pL
∣∣ ∣∣pR

∣∣(
δU 2LS
2v 2s

)2
+ (|pL| − |pR|)2

→
4
∣∣pL
∣∣ ∣∣pR

∣∣
(|pL| − |pR|)2
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Observable physical quantities specifying the vacuum
instability

Vacuum MM current and energy-momentum tensor of final pair
created:
In weakly inhomogeneous fields:

J1cr = µ |jx | , J0cr(x) =
{
−µ |jx | /vs , x ∈ SL
µ |jx | /vs , x ∈ SR

;

T 10cr (SR) = −T 10cr (SL) =
1
2

δU |jx | ,

T 00cr (x) =

{
|π0 (L)| |jx | /vs , x ∈ SL
|π0 (R)| |jx | /vs , x ∈ SR

|jx | =
Ncr

V⊥T
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Statistically-assisted Schwinger effect for bosons

An increment of the numbers of (anti)particles

∆Nm = N (ζ)m −N (ζ)m (in),

∆Nm = Ncr
m

[
1+N (+)m (in) +N (−)m (in)

]
The number of created (anti)particles is growing in comparison
with the one created from the vacuum.
E.g., the flux of created antiparticles in the area SL is
growing proportionally to the flux of coming particles from
the area SR.
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The main new results obtained

The EFT model describing low-energy dynamics of spin waves
(magnons) can technically be identified with the scalar QED
with a magnetic field plays the role of the electric field
potential, Aa0 (r) (an x-step). The magnetic field gradient acts
on magnons in the same way as a constant electric field acts
on charged scalar particles. We present a Fock space
realization of the model.

A magnon-antimagnon pair production on magnetic field
inhomogeneities is studied.
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The main new results obtained
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The main new results obtained

A method was proposed for the experimental implementation
of the boson Klein effect (production of magnon-anti-magnon
pairs) and its application to amplify magnon currents in
magnetic nanostructures.

Statistically-assisted Schwinger effect for bosons is discovered
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The end
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