
Vacuum instability effects in strong field QED
with asymmetric electric field of analytic form

A.I. Breev1, S.P. Gavrilov2, D.M. Gitman3

1Tomsk State University, Tomsk, Russia
2Herzen State Pedagogical University of Russia, St. Petersburg, Russia

3P.N. Lebedev Physical Institute, Moscow, Russia

Fradkin conference 2024

A.I. Breev et al. Vacuum instability effects 1 / 24



Outline

Introduction (SFQED)
Known exactly solvable cases
New non-stationary analytical asymmetric electric field
General solution of Dirac equation
Differential and total mean numbers
New regularization of Klein step

A.I. Breev et al. Vacuum instability effects 1 / 24



Introduction

In QED with strong electric-like external fields (strong-field QED in what follows)
there exists the so-called vacuum instability due to the effect of real particle
creation from the vacuum caused by the external fields (the so-called Schwinger
effect [1]).

A number of publications, reviews and books are devoted to this effect itself and
to developing different calculation methods in theories with unstable vacuum, see
Refs. [1–4] for a review.

In strong-field QED, nonperturbative (with respect to strong external fields) methods
are well-developed for two classes of external backgrounds, namely for the so-called
t-electric potential steps (t-steps) and x-electric potential steps (x-steps). The latter
fields can also create particles from the vacuum, the Klein paradox is closely related to
this process.

[1] J. Schwinger, On Gauge Invariance and Vacuum Polarization, Phys. Rev. 82, 664 (1951).

[2] A. I. Nikishov, in Quantum Electrodynamics of Phenomena in Intense Fields, Proc. P.N. Lebedev Phys. Inst.
111, 153 (Nauka, Moscow 1979).

[3] N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge,
1982); A.A. Grib, S.G. Mamaev, and V.M. Mostepanenko, Vacuum Quantum Effects in Strong Fields
(Friedmann Laboratory, St. Petersburg, 1994).

[4] E. S. Fradkin, D. M. Gitman, and S. M. Shvartsman, Quantum Electrodynamics with Unstable Vacuum
(Springer, Berlin, 1991).

A.I. Breev et al. Vacuum instability effects 2 / 24



Introduction
t-steps represent uniform time-dependent external electric fields that are switched
on and off at the initial and the final time instants. A general nonperturbative
formulation of strong-field QED with t-steps was developed many years ago in
Refs.:

◮ D. M. Gitman, Quantum processes in an intense electromagnetic field. I and II, Sov. Phys. Journ.

19, 1314 (1976); S. P. Gavrilov and D. M. Gitman, Quantum processes in an intense electromagnetic

field producing pairs. III, Sov. Phys. Journ. 20, 75 (1977);

◮ D. M. Gitman, Processes of arbitrary order in quantum electrodynamics with a pair-creating external

field, Journ. Phys. A 10, 2007 (1977);

◮ E. S. Fradkin and D. M. Gitman, Furry picture for quantum electrodynamics with pair-creating

external field, Fortschr. Phys. 29, 381 (1981); E. S. Fradkin, D.M. Gitman, and S. M. Shvartsman,

Quantum Electrodynamics with Unstable Vacuum (Springer, Berlin, 1991).

x-steps represent time-independent inhomogeneous electriclike external fields of a
constant direction. A nonperturbative approach in QED with the x-steps, was
developed in Refs.:

◮ S. P. Gavrilov and D. M. Gitman, Quantization of Charged Fields in the Presence of Critical Potential

Steps, Phys. Rev. D 93, 045002 (2016); Regularization, Renormalization and Consistency Conditions

in QED with x-Electric Potential Steps, EPJ C 80, 820 (2020);
◮ A. I. Breev, S. P. Gavrilov and D. M. Gitman, Calculations of vacuum mean values of spinor field

current and energy-momentum tensor in a constant electric background, EPJ C 83, 108 (2023);
A.I. Breev et al. Vacuum instability effects 3 / 24



The t-case step
The homogeneous fields with constant direction are considered in d = D + 1 -
dimensions, parametrized by coordinates X = (t, r), r =

󰀃
x1 = x , x2, . . . , xD

󰀄
. The

electromagnetic potentials can be chosen as time-like steps,

A0 = 0, A =
󰀃
A1 (t) = Ax (t) = A (t) , 0, . . . , 0

󰀄
, A (−∞) > A (+∞) , (1)

E (t) =
󰀃
E 1 (t) , 0, . . . , 0

󰀄
, E 1 (t) = Ex (t) = E (t) = −A′ (t) ≥ 0. (2)

Figure: General view of electric field (red line) and its vector potential (blue line)
corresponding to a t-step.
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Example 1: T-constant electric field

Figure: T -constant electric field and corresponding vector potential.

The vacuum instability in the T -constant electric field was studied in

V. G. Bagrov, D. M. Gitman and Sh. M. Shvartsman, JETP 41 (1975);
S. P. Gavrilov and D. M. Gitman, Phys. Rev. D 53 (1996);

The field corresponds to a regularized version of the constant field. The vacuum
instability in the latter field was studied e.g. in

J. Schwinger, Phys. Rev. 82 (1951);
A. I. Nikishov, JETP 30 (1970); Proc. P.N. Lebedev Phys. Inst. 111 (1979);
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Example 2: Sauter-like electric field

E (t) = Emax cosh
−2 (t/TS) , Ax (t) = −TS tanh (t/TS) , Emax > 0 . (3)

Figure: Sauter-like electric field and corresponding vector potential

The vacuum instability in the Sauter-like electric field was first studied by N. B.
Narozhny and A. I. Nikishov, Sov. J. Nucl. Phys. 11 (1970) and then many researchers
returned to this problem, since in the case under consideration it was convenient to test
various approaches.
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Example 3: Exponential peak electric field
The field is exponentially growing and decaying electric field. This configuration is
parametrized by three arbitrary parameters Emax > 0, k1 > 0 and k2 > 0:

E (t) = Emax

󰀝
exp (k1t) , t ∈ (−∞, 0]
exp (−k2t) , t ∈ (0,+∞)

, (4)

Ax (t) = Emax

󰀝
k−1
1 [− exp (k1t) + 1] , t ∈ (−∞, 0]

k−1
2 [exp (−k2t)− 1] , t ∈ (0,+∞)

. (5)

Figure: Expotential peak field and its vector potential

The vacuum instability in the exponential peak field was studied in Refs. T. C. Adorno,
S. P. Gavrilov, and D. M. Gitman, Phys. Scr. 90 (2015); EPJ C 76 (2016); S. P.
Gavrilov, D. M. Gitman, and A. A. Shishmarev, Phys. Rev. D 96 (2017); T. C. Adorno
et. al., Int. JMPA 33 (2018).
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Example 4: Inverse square peak electric field
The inverse square peak field is a combination of two parts one increasing and another
one decreasing, both of them inversely proportional to square of the time,

E (t) = Emax

󰀝
(1 − t/τ1)

−2 , t ∈ (−∞, 0]
(1 + t/τ2)

−2 , t ∈ (0,+∞)
, (6)

Ax (t) = Emax

󰀝
τ1

󰀅
1 − (1 − t/τ1)

−1󰀆 , t ∈ (−∞, 0]
τ2

󰀅
(1 + t/τ2)

−1 − 1
󰀆
, t ∈ (0,+∞)

. (7)

This peak configuration is parametrized by three arbitrary parameters Emax > 0, τ1 > 0
and τ2 > 0.

Figure: Inverse square peak field and its vector potential

The vacuum instability in inverse square peak field was studied in T. C. Adorno, S. P.
Gavrilov, D. M. Gitman, EPJ C 78 (2018).
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New Example: Analytic asymmetric electric field
Here we present a new example of exactly solvable case:

E (t) =
E0

8

󰁳
1 + exp (t/σ) cosh−2 (t/2σ) , E0 > 0, σ > 0 , (8)

Ax (t) =
σE0󰁳

1 + exp (t/σ)
. (9)

Figure: Analytic asymmetric field and its potential.

In contrast to the Sauter-like electric field this field is asymmetrical with respect to the
time instant tmax = σ ln 2, where it reaches its maximum value Emax = 3−3/2E0. The
vacuum instability in inverse square peak field was studied in A. I. Breev, S. P. Gavrilov,
D. M. Gitman, and A. A. Shishmarev, Phys. Rev. D 104 (2021).
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The analytic asymmetric electric field and Sauter-like electric field
It is useful to compare analytic asymmetric electric field and Sauter-like electric field.
We present graphs of both fields, analytic asymmetric field with σ = TS/2 (by green
line) and Sauter-like field shifted to the right in time by (TS/2) log 2 (by red line). In
this case, both fields reach the same maximum value Emax at the time instant
tmax = (TS/2) log 2,

Figure: Comparison of Sauter-like and asymmetric electric fields
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The Dirac equation, variable separation

The Dirac equation in has the form

i∂tψ (X ) = H (t)ψ (X ) , H (t) = γ0 󰀋γ1 [−i∂x + eAx (t)]− i∇⊥γ⊥ +m
󰀌
, (10)

where H (t) is one-particle Dirac Hamiltonian, ψ (X ) is 2[d/2]-component spinor. We
seek solutions of Dirac equation in the following form:

ψn (X ) = exp (ipr)ψn (t) , n = (p, s) , (11)

ψn (t) =
󰀋
γ0i∂t − γ1 [px + eAx (t)]− γ⊥p⊥ +m

󰀌
φn (t) , (12)

φn (t) = ϕn (t) vs , γ0γ1vs = vs . (13)

where vs is a set of constant orthonormalized spinors. The scalar functions ϕn (t) satisfy
the following second-order differential equation:

󰀝
d2

dt2
+ [px + eAx (t)]

2 + p2
⊥ +m2 + ieȦ (t)

󰀞
ϕn (t) = 0 . (14)
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General solution of Dirac equation
To find general solution of the Dirac equation, we use the following ansatz:

ϕn (t) = (1 + z)α1 (1 − z)α2 un (z) , z =
󰁳

1 + exp (t/σ) , (15)

α1 = iσ

󰁴
(px − eE0σ)

2 + p2
⊥ +m2, α2 = iσ

󰁴
(px + eE0σ)

2 + p2
⊥ +m2 .(16)

For functions un (z) the Heun equation holds,

Ĥnun (z) = 0 , Ĥn =
d2

dz2 +

󰀕
−1
z
+

1 + 2α2

z − 1
+

1 + 2α1

z + 1

󰀖
d

dz
+

+
z
󰀅
α2

3 − (α1 − α2)
2󰀆+ (α1 − α2 + α3)

z (z − 1) (z + 1)
, α3 = −2ieσ2E0. (17)

The differential operator Ĥn satisfies the identity

ĤnM̂n ≡ B̂nR̂n , (18)

where

M̂n =
bz − α1 + α2 − α3

(a− 1) b
d

dz
+ 1, (19)

R̂n(z) =
d2

dz2 +

󰀕
2α1

z + 1
+

2α2

z − 1

󰀖
d

dz
+

(a− 1) b
z2 − 1

, (20)

a = α1 + α2 −
󰁴

2 (α2
1 + α2

2)− α2
3, b = α1 + α2 +

󰁴
2 (α2

1 + α2
2)− α2

3, (21)
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Generalized Darboux Transformation Method
Taking into account that the differential operator Ĥn satisfies the identity

ĤnM̂n ≡ B̂nR̂n , (22)

we represent the functions un (z) as:

un (z) = UnM̂nwn

󰀕
z + 1

2

󰀖
, (23)

Ĥnun (z) = UnĤnM̂nwn

󰀕
z + 1

2

󰀖
= UnB̂n R̂nwn

󰀕
z + 1

2

󰀖

󰁿 󰁾󰁽 󰂀
= 0 , (24)

where the function wn

󰀃
z+1
2

󰀄
is determined from Eq. R̂nwn = 0.

One sees that Wronskians of the functions

ϕn (t) = (1 + z)α1 (1 − z)α2 UnM̂nwn

󰀕
z + 1

2

󰀖
, (25)

ϕ̃n (t) = (1 + z)α1 (1 − z)α2 ŨnM̂nw̃n

󰀕
z + 1

2

󰀖
, (26)

are proportional to Wronskians of the functions w and w̃ :

W (ϕn, ϕ̃n) = UnŨnΩn (z)W (wn, w̃n) , (27)

Ωn (z) = 22(α1+α2) (1 + z)2α1 (1 − z)2α2
(a− b)α3 + 2

󰀃
α2

1 − α2
2
󰀄

4 (a− 1) b
. (28)
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In- and out-solutions: Definition
In- and out-solutions ψ (t) of the Dirac equation have special asymptotics as t → ±∞
and correspond to initial (−) and final (+) particles and antiparticles. The functions
ϕ (t) that correspond to spinors ψ (t), that are in-solutions, are denoted as ζϕn (t),
while functions ϕ (t) that correspond to spinors ψ (t), that are out-solutions, are
denoted as ζϕn (t). Both sets are classified by a quantum number ζ = ±, which labels
particles (ζ = +) and antiparticles (ζ = −) . Solutions ζϕn (t) and ζϕn (t) have the
following asymptotic behavior:

ζϕn (t) =
ζN exp

󰀓
−i ζεnt

󰀔
, ζεn = ζω1, t → +∞, (29)

ζϕn (t) = ζN exp (−i ζεnt) , ζεn = ζω2, t → −∞, (30)

ω1 =
󰁴

p2
x + p2

⊥ +m2, ω2 =

󰁴
(px + eE0σ)

2 + p2
⊥ +m2 . (31)

Using the equal-time inner product

(ψ,ψ) =

󰁝
dr ψ† (X )ψ (X ) , dr = dx1dx2 . . . dxD (32)

of Dirac bispinors, we easily calculate the normalization constants ζN and ζN , using
explicit forms of their asymptotics,

ζN = ζCY , ζC = [2ω1 (ω1 − ζpx)]
−1/2 , Y = V

−1/2
(d−1) , (33)

ζN = ζCY , ζC = {2ω2 [ω2 − ζ (px + eE0σ)]}−1/2 , (34)
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In- and Out-solutions: Explicit form
In this case in- and out-solutions have the form:

±ϕn (t) = ±NUn,1/2 (1 + z)α1 (1 − z)α2 M̂nwn,1/2

󰀕
z + 1

2

󰀖
, (35)

±ϕn (t) =
±NUn,3/4 (1 + z)α1 (1 − z)α2 M̂nwn,3/4

󰀕
z + 1

2

󰀖
, (36)

where

Un,1 =
21−α1−3α2e iπα2 (a− 1) b

(2α2 − 1) (b − α1 + α2 − α3)
, Un,2 =

2α2−α1+2e−iπα2α2

a− α1 + α2 + α3
, (37)

Un,3 =
2−be−iπ(α2−b)a− 1

a− b − 1
, (38)

Un,4 =
21−ae−iπ(α2−a)b (a− b)

a (b − α1 + α2 − α3)− b (a+ α1 − α2 − α3)
; (39)

wn,1 (ξ) = ξa−2α1−1 (1 − ξ)2α1−a−b+1 ×
× F

󰀃
2α1 − a+ 1, 2 − a; 2α1 − a− b + 2; 2 − α1; 1 − ξ−1󰀄 , (40)

wn,2 (ξ) = ξ1−aF
󰀃
a− 1, a− 2α1; a+ b − 2α1; 1 − ξ−1󰀄 , (41)

wn,3 (ξ) = (−ξ)−b F
󰀃
b, b − 2α1 + 1; b − a+ 2; ξ−1󰀄 , (42)

wn,4 (ξ) = (−ξ)1−a F
󰀃
a− 1, a− 2α1; a− b; ξ−1󰀄 , ξ =

z + 1
2

. (43)
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In- and Out-solutions: g-coefficients
One can also see that in-solutions with quantum numbers n are expressed via
out-solutions with the same quantum numbers n. Thus,

ζψn (t) =
󰁛

ζ′

gn
󰀓
ζ′ |ζ

󰀔
ζ′ψn (t) , ζψn (t) =

󰁛

ζ′

gn
󰀓
ζ′ |ζ

󰀔
ζ′ψn , (44)

where 󰀓
ζψn,

ζ′ψn′

󰀔
= gn

󰀓
ζ′ |ζ

󰀔
δnn′ , gn

󰀓
ζ′ |ζ

󰀔
= gn

󰀓
ζ |ζ′

󰀔∗
, (45)

󰁛

ζ′

gn
󰀓
ζ |ζ′

󰀔
gn

󰀓
ζ′ |ζ

′′󰀔
= δζζ′′ . (46)

Using the Kummer relations for the hypergeometric equation, we find:

gn
󰀃+|+

󰀄
=

+N
+N

2b−α1−3α2+1 sin (πb) Γ (a− b) Γ (b + 1)
(b − α1 + α2 − α3) sin (2πα2) Γ (2α1 − b) Γ (2α2)

,

gn
󰀃−|+

󰀄
= − +N

−N
2a−α1−3α2 (a− α1 + α2 + α3) sin (πa) Γ (b − a) Γ (a)

sin (2πα2) Γ (b − 2α2 + 1) Γ (2α2)
,

gn
󰀃+|−

󰀄
= − −N

+N
2b−α1+α2+1πΓ (a− b)

(a− α1 + α2 + α3) sin (2πα2) Γ (a) Γ (−2α2) Γ (a− 2α1)
,

gn
󰀃−|−

󰀄
= −−N

−N
2a−α1+α2π (b − α1 + α2 − α3) Γ (b − a)

sin (2πα2) Γ (b + 1) Γ (−2α2) Γ (1 − a+ 2α2)
. (47)
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Generalized Furry representation
Decomposing the Dirac operator Ψ̂(x) (Heisenberg representation) in the complete sets
of in- and out-solutions

Ψ̂(X ) =
󰁛

n

󰁫
ân(in) +ψn(X ) + b̂†

n(in) −ψn(X )
󰁬
=

=
󰁛

n

󰁫
ân(out) +ψn(X ) + b̂n(out)† −ψn(X )

󰁬
. (48)

we introduce in- and out-creation and annihilation Fermi operators,
󰁫
ân(in/out), â†m(in/out)

󰁬

+
=

󰁫
b̂n(in/out), b̂†

m(in/out)
󰁬

+
= δnm . (49)

The initial |0, in〉 and final |0, out〉 vacuum vectors, as well as many-particle in- and
out-states, are defined by

ân(in)|0, in〉 = b̂n(in)|0, in〉 = 0 , ân(out)|0, out〉 = b̂n(out)|0, out〉 = 0 , (50)

|in〉 = b̂†
n(in) · · · â†n(in) · · · |0, in〉 , |out〉 = b̂†

n(out) · · · â†n(out) · · · |0, out〉 .(51)

The in- and out-operators are related by linear canonical transformations,

ân(out) = gn
󰀃+|+

󰀄
ân(in) + gn

󰀃+|−
󰀄
b̂†
n(in) , (52)

b̂†
n(out) = gn

󰀃−|+
󰀄
ân(in) + gn

󰀃−|−
󰀄
b̂†
n(in) . (53)

These relations allow one to calculate the differential mean numbers of created pairs

Nn = 〈0, in|â†n(out)ân(out)|0, in〉 =
󰀏󰀏gn

󰀃
−|+

󰀄󰀏󰀏2 . (54)
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Vacuum-to-vacuum probability, differential and total mean numbers

Here, using exact solutions that were found above, we already can calculate
characteristics of the vacuum instability in the analytic asymmetric electric field, namely
the vacuum-to-vacuum transition probability Pv, differential Nn and total N mean
numbers of created pairs.
As it follows from the general formulation of strong–field QED with t-electric potential
steps, all these characteristics are expressed via coefficients

Pv = exp

󰀥
󰁛

n

ln (1 − Nn)

󰀦
, Nn =

󰀏󰀏gn
󰀃
−
󰀏󰀏+ 󰀄󰀏󰀏2 , N =

󰁛

n

Nn. (55)

Using the above calculated coefficients gn
󰀃
−
󰀏󰀏+ 󰀄

, we can find:

Nn =
sinh 2σπ (ω0 + ω1 − ω2/2) sinh 2σπ (ω0 − ω1 + ω2/2)

sinh 4σπω1 sinh 2σπω2
, (56)

ω0 =
1
2

󰁴
(px − eE0σ)

2 + π2
⊥ , (57)

ω1 =
󰁴

p2
x + p2

⊥ +m2, ω2 =

󰁴
(px + eE0σ)

2 + p2
⊥ +m2 . (58)
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Small values of the parameter σ ≪ (eE0)
−1

󰁴
p2
x + p2

⊥ +m2.
In this case, the analytic
asymmetric electric field and its potential
change rapidly, and the electric field is a short
pulse corresponding to a small increment ∆W ,

∆W = Px (t → −∞)− Px (t → +∞) =

= eE0σ , (59)

Px (t) = px + eAx (t) . (60)

The differential mean numbers Nn are also small enough for any px and π⊥,

Nn =
(eE0σ)

2 π2
⊥

4 (p2
x + π2

⊥)
2

󰀗
1 + O

󰀕
eE0σ

p2
x + π2

⊥

󰀖󰀘
. (61)

It is the case of a weak external field such a result can be derived in the frame of
perturbation theory with respect to the external field. At small longitudinal momenta,
p2
x ≪ π2

⊥,

Nn ≈ (∆W )2

4π2
⊥

, (62)

which coincides with the result obtained, for example, for a weak pulse of T -constant
electric field with the height ∆W = eET of a corresponding step in the same range of
longitudinal momenta. In the case of a small ∆W the leading term of the distribution
Nn is given by Eq. (62) does not depend on the field configuration.
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Big values of the parameter sigma – a slowly varying electric field

σ ≫ (eE0)
−1/2 max

󰀋
1,m2/eE0

󰀌
. (63)

In this case the differential mean numbers can be approximately presented as:

Nn ≈ exp [−πτ ] , τ = 2σ (2ω1 + ω2 − 2ω0) . (64)

The main contribution to the total number N =
󰁓

n Nn is given by the expression

N ≈ V(d−1)ρ, ρ = k
∆W

eEmax
β, β =

J(d)

(2π)d−1 [eEmax]
d/2 exp

󰀗
− πm2

eEmax

󰀘
, (65)

k =
2
3

󰁝 +∞

0

dq

(q2 + 2q)1/2 (q + 1)d/2 cos
arccos

󰀅
(q + 1)−1󰀆

3
exp

󰀗
− πm2

eEmax
q

󰀘
, (66)

We see that the number density ρ of created pairs is proportional to the increment ∆W

of kinetic momentum. This latter quantity defines the total number of states ∆WL/2π
with the longitudinal momenta px , in which particles can be created (here L is the length
of the system along the axis x). Note that this is typical to any slowly varying field. The
density of created pairs obtained with the help of the slowly varying field approximation
(see S. P. Gavrilov and D. M. Gitman, Phys. Rev. D. 95 (2017)) coincide with (65).
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x-potential of analytic asymmetric electric field

We note that among the above exactly solvable cases only the Sauter electric field is
given by an analytic function,

A
(Sauter)
0 (x) = −LES tanh (x/L) ,

E(Sauter)(x) = ES cosh
−2 (x/L) , ES > 0, L > 0. (67)

This field reaches its maximum value at x = 0 and is symmetric with respect to the
origin. Unlike the above mentioned cases given by piecewise smooth x-steps, physical
quantities calculated for the analytic Sauter field are presented by elementary functions,
which makes this case especially convenient for physical interpretations.

Here we present a new example
of exactly solvable case in which the external
field is given by the following analytic function:

A0(x) =
σE0󰁴

1 + exp
󰀃
x
σ

󰀄 , E0 > 0, σ > 0,

E(x) =
E0

8

󰁵
1 + exp

󰀓 x

σ

󰀔
cosh−2

󰀓 x

2σ

󰀔
.(68)
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Regularizations of Klein step (x-case) I

The magnitude
δU of the potential step is given by the difference

δU = UR − UL = eE0σ. (69)

Depending on the magnitude
δU, the step is called noncritical or critical one,

δU < δUc = 2m , noncritical step
δU > δUc , critical step . (70)

Let us study characteristics of the vacuum instability caused by the asymmetric field
with σ sufficiently small, σ → 0. If UL/R are given constant and

δUσ ≪ 1 (71)

the field imitates sufficiently well the asymmetric Klein step and coincides with the latter
as σ → 0.
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Regularizations of Klein step (x-case) II
The vacuum instability is due to contributions formed in the Klein zone
Ω3 = {UL + π⊥ ≤ p0 ≤ UR − π⊥}. In this range the important characteristic of all the
processes are differential mean numbers. For Sauter electric field we have

Nn =
󰀏󰀏gn

󰀃
+

󰀏󰀏− 󰀄󰀏󰀏−2
=

sinh(πL|pL|) sinh(πL|pR|)󰀏󰀏󰀏󰀏 sinh
󰀓
πL δU+|pL|−|pR |

2

󰀔
sinh

󰀓
πL δU−|pL|+|pR |

2

󰀔 󰀏󰀏󰀏󰀏
. (72)

For asymmetric electric field we obtain:

Nn =
󰀏󰀏gn

󰀃
+

󰀏󰀏− 󰀄󰀏󰀏−2
= sinh

󰀓
2π

󰀏󰀏󰀏pL
󰀏󰀏󰀏σ

󰀔
sinh

󰀓
4π

󰀏󰀏󰀏pR
󰀏󰀏󰀏σ

󰀔
|β+β−|−1 ,

β± = sinh

󰀝
πσ

󰀗󰁴
2δU2 + 2 |pR|2 − |pL|2 ±

󰀓
2
󰀏󰀏󰀏pR

󰀏󰀏󰀏−
󰀏󰀏󰀏pL

󰀏󰀏󰀏
󰀔󰀘󰀞

. (73)

In the Klein step limit for both fields we have

Nn ≈
4
󰀏󰀏pL

󰀏󰀏 󰀏󰀏pR
󰀏󰀏

δU2 − (|pL|− |pR|)2
, (74)

where pL/R =
󰁴󰀃

p0 − UL/R
󰀄2 − π2

⊥.
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Final remarks

One of the important result of the work is the original approach to solving the
Dirac equation in the asymmetric electric field and the construction of the
corresponding in- and out-solutions.

With the help of these solutions, basic characteristics of the vacuum instability are
calculated nonperturbatively, namely, the vacuum-to-vacuum transition probability
Pv, differential Nn and total N mean numbers of created pairs.

We analyze the dependence of the calculated quantities on the time scale
parameter σ, which determines the shape of the analytic asymmetric electric field,
for example, for the strong field and in the case when the increment ∆W of the
longitudinal momentum is large enough (this is the case of a rapidly changing
electric field) the differential mean numbers Nn reach their maximum possible for
fermions values Nn ≈ 1 in wide ranges of the momenta p′

x and p⊥.

The influence of the asymmetry of the field under consideration on the particle
production is studied. It was demonstrated that differential mean numbers behave
differently as functions of positive and negative longitudinal momenta px .

The obtained characteristics of the vacuum instability in the analytic asymmetric
electric field were compared with ones obtained in other exactly solvable cases.
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