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Outline of the talk

Talk is based on dicussions and papers
made in collaboration with

G. Yu. Prokhorov and O.V. Teryaev
JINR (Dubna), Kurchatov Institute (Moscow)

1. Adler model and results for
gauge and gravitational anomalies (briefly).

2. Perturbative calculations in hydrodynamics and
gauge anomaly

3. Perturbative calculations in hydrodynamics and
gravitational anomaly.



I Adler model

Spin 3/2 left-handed Rarita-Schwinger field ψµ
interacting with spin 1/2 left-handed field λ

S =

∫
d4x

(
−ελρµνψ̄λγ5γµ∂νψρ + i λ̄γµ∂µλ− imλ̄γµψµ+imψ̄µγµλ

)
the central point is the non-diagonal Majorana mass which
tends to infinity, m→∞ and removes spin -1/2 fields
(γµψµ, λ) from the physical spectrum



Adler model. Basic idea

Bremsstrahlung:
spin-1/2, Left-Left transition

∼ θ2dθ2

(θ2+m2/E2)2 ∼ ln(E/m)

spin-1/2 Left-Right transition

∼ (m2/E2)dθ2

(θ2+(m2/E2))2 ∼ const

Rarita-Schwinger field

Left-Left transition :

∼ dθ2

(θ2+(m2/E2))2 ∼ IR quadratic divergence

Removing chirality-1/2 part removes this divergence



Anomalies in Adler model

∂µJµA,Adler = − 5
16π2 ε

muνρσFµνFρσ

5/2 = 3/2 + 2(1/2)

Gauge anomaly is ptoportional to spin of constituents

∇µJµA,Adler = −19
384π2√−g ε

αβγδRαβρσRρσ
γδ

19/4 = (3/2)− 2(3/2)3 −+2(1/2)− 4(1/2)3

Gravitational anomaly is proportional to
S − 2S3, where S is spin of constituents (Duff, 1988)



Summary I

Calculation of anomalies for the Adler model is
self-consistent, and we used it in applcations,
along with spin-1/2.



II Quantum hydrodynamics

Son+Surowka paper (2009) on anomalous transport
Input: conservation laws, including anomalous current,
∆(entropy) ≥ 0

∂αJα = e2CanomalyFF̃ (1)

Output: a few chiral effects including chiral vortical effect:

JαCVE = µ2Canomaly Ωα (2)

where Ωα = (1/2)εαβγδuβ∂γuδ, uβ is fluid’s velocity

Note that CVE survives in absence of external e-m fields,
i.e. in absence of anomaly



Density Operator

In quantum statistics matrix elements are averaged with
density operator ρ̂

ρ̂ = exp (−Ĥeff/T )

where Ĥeff is built on conserved quantities: charges Q̂i ,
angular momentum ~̂J (Landau-Lifshitz) + boost ~̂K
(F. Becattini (2017))

Ĥeff = Ĥ0 − ΣiµiQ̂i − ~Ω~̂J − ~a ~̂K

where ~Ω angular velocity, ~a is acceleration
Ĥeff picks up maximum entropy state
while in case of Ĥ0 we look for for minimum of energy



Adaptation to hydrodynamics

In the standard form:

δĤ = −µV Q̂V − µAQ̂A

In localized form (Sadofyev, Shevchenko,VZ (2011))
δĤ → δL(x) = ‘ µV uαjαV (x) + µAjαA (x)

eAV
α → eAV

α + µV uα; gAAA
α → gAAα + µAuα

where 4-velocity uα is treated as an external field.

All chiral effects are immediately generated through this
substitution, without considering fluid dynamics further



Summary II

Finding solutions to hydrodynamic equations
is greatly simplified by using substitution eAα → µuα. But
in gravitational case there is no such a simple recipe.



III Gravitational anomaly. Motivations

Gravity effects certainly unobservable. Then Why ?
Quark-gluon plasma, produced in heavy-ion collisions is
strongly de-accelerated immediately after the collision.
Estimates (D.Kharzeev (2005)) tell us that temperature of
the plasma is around Unruh temperature

TUnruh ∼
a

2π

Can we learn smth about matter in gravitational field?
Analogy: Chiral vortical effect ~JA = Canomalyµ

2~Ω does not
depend on strength of e-m interaction but has e-m analogy

Thus, observing effect of acceleration could tell us about
gravitational interactions. “kinematical gravity”



Duality of statistical and gravitational
approaches

Properties of fluids in equilibrium are evaluated statistically
in terms of density operator, or effective interaction:

δĤeff = −~Ω~̂J − ~a ~̂K

where ~̂K , ~̂J are operators of boost and angular momentum
and ~a, ~Ω are acceleration and angular velocity.



Cont’d

In field theory, gravitational interaction is described by
fundamental interaction Lagrangian:

δL = −1
2
θαβhαβ

where θαβ is the energy-momentum tensor of matter, hαβ is
the gravitational potential, also accommodating ~Ωgrav , ~agrav .



Cont’d
Furthermore, one evaluates “external probes”,
< θαβ >,< Jα5 > within both approaches, statistical and
gravitational. Results compared for the same values of a,Ω.
Expect the same results

The duality is confirmed on a number of examples. Our
first example ((2019) Dubna) is for energy density of gas of
massless spin-1/2 particles

(T 0
0 )s=1/2 =

7π2T 4

60
+

T 2a2

24
− 17a4

960π2

both statistically, in non-inertial frame, and, geometrically,
on Rindler space with a conical singularity.



Duality, cont’d

The duality holds in the limit:

GNewton → 0, GN ·Msource → const or (Msource → infty)

that is, in the quasiclassical limit for gravity.

There are well known bulk-boundary dualities in this limit.
Our example is a kind of a simplest case in this series.



Duality for gravitational anomaly

For non-inerial frame: ~JA,KVE =
(
λ1Ω2 + λa2

)
~Ω

In external gravitational field: ∇µJµA = NRR̃
Independent calculations of 1-loop graphs in two theories

For spin-1/2:

λ1 − λ2 = − 1
24π2 +

1
8π2 =

32
384π2

For Adler spin-3/2:

λ1 − λ2 = − 53
24π2 +

5
8π2 = −32 · 19

384π2

i.e. full agreement



Summary III

So far, no inconsistencies. Interpretation of the effects
might be difficult.


