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Strong Magnetic Field

@ In vacuum, regime of quantizing magnetic field is achieved
when field strength is comparable to fermion mass squared
or larger. In QED, it is the electron critical value:

B> B.=m?/e~441x108 G

@ In hot (dense) matter, besides the Landau energy scale,
magnetic field should be comparable to or exceed the value
of temperature squared (chemical potential squared)

@ Such conditions are known despite being very rare:

e agnetized neutron stars: up to B ~ 10'3 G in pulsurs and
a few times 10** G in magnetars

e Non-central relativistic heavy ion collisions: strength could
reach QCD energy scale, B ~ B, = m2 /e ~ 3.1 x 108 G

o Intense laser fields

o External magnetic field background is considered only
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Photon Polarization Operator

Photon polarization operator is typical example of two-point
correlation function
Lagrangian of spinor QED

Lqep(x) = eQf [F(x)7.f(x)] A¥(x)

Matrix element of v — ~ transition !
7(9) 7(d)
Moy = —igg(q) P (q) e ’ 7 !

e PH¥(q) is two-point correlator of two vector currents
@ Photon dispersion relations follow from the equations

@ -NW(g=0 (A=1,23)

° I'I(’\)(q) are eigenvalues of the photon polarization operator
@ In an external background field, corresponding modification

of fermion propagator should be taken into account
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Propagator in Constant Homogenious Magnetic Field

@ Dirac equation in an external electromagnetic field

{lio" —eQf A¥(r, t)]yu — me} W(r,t) =0

Qf and my are the relative charge and mass of the fermion

Pure constant homogeneous magnetic field: B = (0,0, B)

Equation for fermion propagator in the magnetic field

{[i 9" — e Qr A“(x)] 7 — me} Gr(x,y) = i 6 (x — y)

Propagator can be constructed as an infinite sum of exact
solutions of Dirac equation

Alternatively, the Fock-Schwinger method can be used

Lorentz-covariant four-potential: A, (x) = —F,.,x"/2

FLu is the strength tensor of external electromagnetic field
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Propagator in the Fock-Schwinger Representation

@ General representation of the propagator in magnetic field
[J.S. Schwinger, Phys. Rev. 82 (1951) 664]
Gr(x,y) = € Sp(x — y)
@ Translationally and gauge non-invariant phase factor
X 1 y
®xy) = —e@s [ de" [AE)+ JFuels )
y
@ In two-point correlation function phase factors cancel each other
(x,y) +o(y,x) =0

@ Gauge and translationally invariant part of a charged fermion
propagator (8 = eB Qr)
8 [ds [+ _
S:) = e 0/ % {oxhoycot(ss) — 10X -
Bs
sin?(Bs)

1~
X exp (—i {m%s—i— — (XAX) —
4s

(XA9) + mys [2con(5s) + (ren)] | x

B cot(Bs)
4

v
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Basic Tensors in Presence of Magnetic Field

@ Dimensionless tensor of the external magnetic field and its dual
F. . 1
PaB = %ﬁ ) PaB = > EaﬁpaSDpU

@ Minkowski space is divided into two subspaces:
o Euclidean with the metric tensor A, = (09)uv;
plane orthogonal to the field strength vector
o Pseudo-Euclidean with the metric tensor A, = (@),
o Metric tensor of Minkowski space g, = /~\W — A
e Arbitrary four-vector a# = (ap, a1, az, a3) can be decomposed
into two orthogonal components

au = /~\xway —Nwa” =ay, —ai,
@ For the scalar product of two four-vectors one has
(ab) = (ab)H — (ab)L
(ab)” = (a/~\b) = a“/N\Wb”, (ab), = (alb) = a'N,, b”
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Orthogonal Basis Motivated by Magnetic Field

o Correlators having rank non-equal to zero, could be
decomposed in some orthogonal set of vectors
@ In magnetic field, such a basis naturally exists

b;(}) = (QSD)W b£2) = (qSZ)u
b3 = * (Aa)y — (aMg) qu, B = g,
@ Arbitrary vector a, can be presented as
: by (i)
W=D Agngny ¥
i=1
@ Third-rank tensor T,,, can be decomposed similarly

4 b pU) pk)
T/,Lljp: Z T’Jk . . p ,V ,p X TS
et (b b)) (bW BU)) (b(K) b(K))

Tijk = T“”pbg)by)b,()k). D



Photon Polarization Operator in Magnetic Field

° I'I(’\)(q) are eigenvalues of the photon polarization operator

3
le(q) = Z

A=l
@ In vacuum, P,,(q) has two physical eigenmodes
@ In an external constant homogeneous magnetic field,

the number of physical eigenmodes is the same
o Eigenvectors are determined by the field strength tensor

O R D= o)
e In the magnetic field, M) (gq) contains both vacuum and
field-induced parts (for electron)

. a L (x
N(q) = —iP(¢?) - = V)
@ Details on Y\(/?/) can be found in A. Kuznetsov & N. Mikheev,
Electroweak Processes in External Electromagnetic Fields

(Springer, 2013)

(A) p(N)
o M (g)
(b2

9/27



AA-Correlator: Axion Self-Energy

[Skobelev V. V., Phys. At. Nucl. 61 (1998); Borisov A.V. & Sizin P.E.,
JETP 86 (1999); Vassilevskaya L. A. et al., Phys. At. Nucl. 64 (2001)]

Other example is the axion self-energy
Lagrangian density of fermion-axion interaction

Lar(x) = 25”;; [FO)" 5 F(x)] D a(x)

gar = Crmy/f; — dimensionless Yukawa constant
Cr — dimensionless factor specifying the axion model
@ Matrix element of a — a transition determines the
electromagnetic correction to axion mass squared m>

f
a(g a(q')
f
f

HLAVA) is two-point correlator of two axial vectors
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Axion Self-Energy in Magnetic Field

o Amplitude of axion self-energy

Maﬁa(q2, qi?ﬁ) - g8371l'—2 /Slnc(l;t /d QH COS(ﬁt) — qL COS(Btu)}
o 0
X exp {— [mft CL” 1-?)+q °°5(52 ;“S)i;(;?;(ﬁt)] }

@ Two proper times variables s; and s, replaced
by t =s1+s and u=(s1 — )/t
@ Field-induced contribution to the a — a transition

AM(q27 qiv 6) - Ma—>a(q27 qf_a B) - Ma—>a(q27 07 0)7

@ This quantity is free from UV divergences
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Generalized Local Fermionic Current

[M. Yu. Borovkov et al., Phys. At. Nucl. 62 (1999) 1601]
e Lagrangian density of local fermion interaction
Lint(x) = [FEOMF(x)] Jax)

e Jp — generalized current (photon, neutrino current, etc.)

@ [4 — any of y-matrices from the set
{17 V55 Vs Yu V5, Opv = i[r)/luryl/] /2}
@ Interaction constants are included into the current Jyu
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General Case of Two-Point Correlator

@ Two-point correlation function of general form
Mag = / d*X e () Sp {Sp(—X)Ta Sp(X) g}

@ Sp(X) — gauge and translationally invariant part of the fermion
propagator

@ XM = x#* — y# — integration variable

@ Correlations of scalar, pseudoscalar, vector and axial-vector currents
were studied by Borovkov et al. [Phys. At. Nucl. 62 (1999) 1601]

@ Consider correlations of a tensor current with the other ones
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Electromagnetic Dipole Interaction of Fermions

@ Models beyond the SM can produce effective operators at
current energies and Pauli Lagrangian density, in particular

Lanvi(x) = f% [F(x)o F(x)] F*(x)

@ For electron, the coupling can be written as p. = pugae, where
ug = e/(2me) is Bohr magneton and a. is electron AMM

@ Total Lagrangian of interaction
Lint(x) = Lqep(x) + Lamm(x)

@ It gives additional contribution to the polarization operator
o Contribution linear in AMM is related with correlator of vector
(VT)
and tensor currents, M,
@ Contribution quadratic in AMM is determined by correlator
(TT)
of two tensor currents, M50
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Correlator of Vector and Tensor Currents

@ Vector-tensor (VT) correlator, I'ILY,E), is rank-3 tensor

@ Vector-current conservation and antisymmetry of the tensor
current leave 8 non-trivial coefficients in the decomposition on
basis vectors

@ Of them, four coefficients only are independent

@ Double-integral representation of coefficients is used

o 1

1 dt —iQ(t,u)

Uk (q qLa/B): m/ t /due a, Uk (q qLaB t, U)
0 0

@ Phase definition

CIH > cos(Btu) — cos(St)

t(1- u2) taL 28sin(Bt)

@ Integration variables and relation between momenta squared
t=si+s,u=(a1-%)/(s2+%) q=9¢ +qi

Q(t, u) = mit —
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Integrands in Vector-Tensor Correlator

> Bt cos(Btu)
sin(St)

YS;T)(ﬁ U) = - Yl(Z.T)(tv U) = —mf qi q

Yz(z};T)(t, u) = —Ygf)(t, u) = ms ai (Clﬁ)2 sm[gi/;t) [cos(Bt) — cos(Btu)]

t
Yz(;;T)(L u) = _Yz(Z/zT)(L u) = ms qﬁ smﬁ(iﬁt) [qi cos(Bt) — qﬁ cos(Btu)]
VT VT Bt cos(Btu)
Vi (6 0) = =Y (e u) = —mr ad af () ==
@ Choice of basis vectors is optimal because of vector current

, VT
conservation q”l'l,(wp)

° YASJ-ZT) vanish naturally in this basis
@ Antisymmetry in the last two indices is due to antisymmetric
tensor current
2 2 d . (VT) d . | . I
e Parameters g%, g7, and 3 in Y,-jk are assumed implicitly
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VT Contribution to v — v Amplitude

@ Basis vectors are normalized, so v — v amplitude by itself
is required to extract the photon polarization operator
@ Vector and tensor currents in momentum space

Jy = —eQe™, 1 = —inefP)2 = —ips(qe — q°e™) /2
@ Relation among the v — ~ amplitude and VT correlator
Myr = Qe YD 770 /2

@ The v — ~ amplitude in explicitly gauge invariant form

o] 1

_ eQeprmef dt / —io(tu)
Mvr === | sn(Be) ] ¢

0

o

2qﬁ

@ Used the notation for tensor contractions

(F1F) =6, (8f0) =g £f)

2
X {cos(,@tu) (Ff*) + 9L [cos(Bt) — cos(Btu)] (Bf') (g?)f*)}
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Field Induced Part of the Amplitude

The v — ~ amplitude in the fieldless limit

0 le,Ufmf ) —it]m w2
ity =St [4 fanebts

o Field-induced part is obtained after subtraction of Mg%

AMyr = Myt — M),

The strong field limit, i. e. lowest Landau level contribution

smf eQrurmeBql g2 N
MUTY = sy e @ B F)
I

Introduce z = 4m%/qﬁ and used the function

1 1—z—-1 .
o= { o 4 o] <<
\/2171 arctan \/171, z>1
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Correlator of Two Tensor Currents

@ Tensor-tensor (TT) correlator, I'I,(E,Eg is rank-4 tensor

@ Antisymmetry of both tensor currents leaves 36 non-trivial
coefficients in the basis decomposition

@ Of them, eight coefficients only are independent
@ Double-integral representation of coefficients is used

o 1
1 dt i
”%T)(q27 qi.B) = 2 /T/due a(t.u) Y,-J(-,:l;T)(qz7 g1, B; t, u)
o o
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Integrands in Tensor-Tensor Correlator

o Coefficients relevant for the photon polarization operator

) cos(ft) — cos(Btu)
sin?(Bt)

+4qiqﬁ [cos(Btu) — usin(Btu) cot(Bt)] — qﬁ [(1 — u2) qﬁ + 4m?] cos(fBtu)

_— [(1 — u2) qﬁ — 4m?] cos(Bt) + % qﬁ [cos(ﬁt) — sinﬁ(';t)} }

Yau(at, a3, Bit,u) = —q% {2qi (a5 +aqi

2
TT), 2 2 ,. q| (TT), 2 2 ,.
Y2(424)(q”,q1_, Bit,u) = 2 y1(414)(qH»qJ_7 B; t, u)
1

@ Other six coefficients and TT part of the v — ~ amplitude
will be presented in a forthcoming paper

20 /27



AMM Contribution to Photon Polarization Operator

@ For electron, tensor coupling can be written as e = aejip
o Field-induced part of MM (q) is modified

NN (q) = —iP(e?) = = Vi) +2= 2. V{7 + S a2 v

Last two terms can be presented in the form of double integral

dt \) —iQ 2 _—iQ
VT(T”_/ / {smﬂt yrgme T o ae

Notations are from the book by A. Kuznetsov and N. Mikheev

Part independent on the field is subtracted

Integrands entering the vector-tensor part

Y3 =y @) = ¢ cos(Btu)

y3) = qf cos(Btu) — g3 cos(Bt)
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AMM Contribution to Photon Polarization Operator

@ Integrands in the tensor-tensor part

(TT) (TT)
y(l) _ Y1414 2 _ Y2424
T 4m2q3’ T 4m?2 qﬁ

@ For the electron, tensor-tensor term gives a-suppressed
correction to vector-tensor one

@ If neutrinos have local interaction with photon due to AMM,
they contribute to TT part of photon polarization operator

@ Taking into account the upper limit on neutrino AMM
ty < 6.4 x 1072 [PDG, 2022], this contribution,
being ~ 12, is negligible
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Crossed-Field Limit

@ Pure field invariant vanishes: 5 — 0

@ Dynamical parameter: X7 = €*Q? (gFFq) = 5°q3.

@ The crossed-field limit is valid for an ultrarelativistic particle moving in
the direction transverse to the field strength in a relatively weak magnetic
field, x2 > 3°

@ Gauge and translationally invariant part of the fermion propagator
[A. Kuznetsov & N. Mikheev, Electroweak Processes in External
Electromagnetic Fields (Springer, 2013)]

500 = 5o [ % {00 = 22 0xen)

3272 s3

+iBs (X&Y)vs + mrs [2 + Bs (ve7)] }

X exp {—: {mfs + =+ % (X/\X)} }

@ ¢, and A, have the same definitions as in the magnetic field

23 /27



Crossed-Field Limit

Pure field invariant vanishes (5 — 0)
As basic vectors, accept the following orthonormalized set

eQr eQr -
b = L (aF) b = = (aF),

Xf M7Xf

Q .
b = =L [¢* (aFF), — (aFFa)q,] b =

/ 12 /q2
Dynamical parameter: X% = €?Q? (qgFFq) = 3%q%
Coefficients of the vector-tensor correlator in this basis:

472 |t

ol f-ere
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Vector-Tensor Correlator Integrands in Crossed Fields

@ Results for integrands in external electromagnetic crossed fields

VT VT
Y1(14 )= Y1(41 )= = —ms\/q?

242
Y(VT) — y(VT) - m X¥ 1— u2
223 232 f2 \/?( )
(vr) (VT) 2
Yos ' ==Yy ' =—msy/q (1 —u )
VT VT
Y3(34 )= 3(43 )= —-mfrvq
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Integrands of Tensor-Tensor Correlator in Crossed Fields

@ Double-integral representation of coefficients is used again

1 dt
I_Ifj-/f/zT)(q Xf) = a2 / /d YU(,Z;_;T (q27Xf; t,u)

XeXp{_i[<mf—j(1—U ))H— 8Xf( —u2)2t3]}

@ Integrands of the tensor-tensor correlator contributing to the photon
polarization tensor

t22

Y SE(1- %) (3+50°)

1414 — q2 (1 - Uz) + 4”7? -

2m?t?x2 t* 2 8it?xr
+% (1-u%) + 72q§ (1-u?)"(9-u?) + 30

Y2(4T2£)fq (lfu)+4 f*%(l*”z)(\%“rSUz)

2m? 22 t*x? 2 8it’x
+ ;2 ’ (1 - UZ) + 726]; (1 - u2) (9 - u2) + 3q2 -

@ The other coefficients will be presented in a forthcoming paper
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Conclusions

@ Two-point fermionic correlators in presence of constant
homogeneous external magnetic field are considered

@ This analysis extends the previous one by inclusion the tensor
current into consideration resulting the total set of two-point
fermionic correlators

@ Study of correlators of tensor fermionic current with the others
allows to investigate effects of the fermion anomalous
magnetic moment in the one-loop approximation

@ Field-induced contribution to the photon polarization operator
linear and quadratic in fermion anomalous magnetic moment
are calculated

@ Computer technique developed for two-point correlators is
planned to be applied for three-point ones

27 /27



