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B-mesons oscillations overview
Feynman diagram of B0-B̄0 oscillations

• Mixing:

B0 =
BL + BH

2p
,

B̄0 =
BL − BH

2q
,

where p, q are responsible for CPV.

1. Oscillations occur if the following value is
nonzero:

R :=
Γ(B0 → B̄0 → ℓ−ν̄ℓX )

Γ(B0 → ℓ+νℓX̄ )
=

x2

2 + x2
.

2. The number x = mH−mL
Γ = ∆m

Γ
determines the value of oscillations.

3. The oscillations can be measured
experimentally in Υ → BB̄ → ℓ±ℓ±X :

r =
N++ + N−−
N+− + N−+

,

where N±± are the numbers of dileptons
of the required sign.
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One-particle and two-particles wave functions

• The value R can be derived by means of one-particle wave function:

∣∣B0(t)
〉
= e−iMte−(Γ/2)t

[
cos

(
∆m

2
t

)
|B0⟩+ i

q

p
sin

(
∆m

2
t

)
|B0⟩

]
.

• The value r describes the oscillations of C-odd B0B̄0 system → two-particles wave
function needed.

• However r = R → tagging and no need for two-particle wave function.

• It doesn’t work when B mesons are produced in C -even state or incoherently.

• Here we describe various problems where the expressions obtained by means of
two-particles wave functions of oscillating B-mesons should be applied.
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Two-particle wave function of the C-odd state

• C -odd state is produced in Υ decay: Υ → B0B̄0.

• Since quantum numbers of the resonance 1−− → B0B̄0 in P-wave with C = −1.

• Antisymmetric wave function:∣∣B0B̄0
〉
odd

(t1, t2) =
∣∣B0(t1)

〉 ∣∣B̄0(t2)
〉
−
∣∣B0(t2)

〉 ∣∣B̄0(t1)
〉
.

• Substitution t = (t1 + t2)/2 and ∆t = t1 − t2 leads to:

∣∣B0B̄0
〉
odd

(t,∆t) = e−2iMte−Γt

[
i sin

∆m

2
∆t

(
q

p
B̄0
1 B̄

0
2 − p

q
B0
1B

0
2

)
+

+ cos
∆m

2
∆t

(
B̄0
1B

0
2 − B0

1 B̄
0
2

)]

• Here indices 1, 2 mesons distinguish B0 states with different momenta.
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Calculation of Rodd

• According to N±± = 1
2 |
〈
B0B0

∣∣B0B̄0(t1, t2)
〉
odd

|2, N±∓ = 1
2 |
〈
B0B̄0

∣∣B0B̄0(t1, t2)
〉
odd

|2:

N++ = N−− =
1

2

+∞∫
−∞

d∆t

∞∫
|∆t|/2

dte−2Γt sin2
∆m

2
∆t =

1

4Γ2
x2

1 + x2
,

N+− = N−+ =
1

2

+∞∫
−∞

d∆t

∞∫
|∆t|/2

dte−2Γt cos2
∆m

2
∆t =

1

4Γ2
2 + x2

1 + x2
.

• Normalization is as follows:
∑

i ,j=+,−
Nij = 1/Γ2.

• For the Rodd we reproduce the well-known expression obtained by means of one-particle
wave function:

Rodd =
N++ + N−−
N+− + N−−

=
x2

2 + x2
.
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Two-particle wave function of the C-even state

• C -even state is produced in Υ(5S) decay with further e/m decay: Υ → B0∗B̄0 → B0B̄0γ.
• Symmetric wave function:∣∣B0B̄0

〉
even

(t1, t2) =
∣∣B0(t1)

〉 ∣∣B̄0(t2)
〉
+
∣∣B0(t2)

〉 ∣∣B̄0(t1)
〉
;

• Analogously to the C -odd state we obtain:

N++ = N−− =
1

2

+∞∫
−∞

d∆t

∞∫
|∆t|/2

dte−2Γt sin2∆mt =
1

4Γ2
3x2 + x4

(1 + x2)2
;

N+− = N−+ =
1

2

+∞∫
−∞

d∆t

∞∫
|∆t|/2

dte−2Γt cos2∆mt =
1

4Γ2
2 + x2 + x4

(1 + x2)2
;

Reven =
3x2 + x4

2 + x2 + x4
.
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Incoherent B mesons production

• Incoherently B mesons are produced in hadron collisions at LHC.
• Wave function has no definite C -parity:∣∣B0B̄0

〉
inc

(t1, t2) =
∣∣B0(t1)

〉 ∣∣B̄0(t2)
〉
;

• Performing the analogous calculation as in the latter cases we obtain:

N++ = N−− =
3x2 + x4

2 + x2 + x4
;

N+− =
1

4Γ2
(2 + x2)2

(1 + x2)2
; N−+ =

1

4Γ2
x4

(1 + x2)2
.

• It is instructive that N+− ̸= N+− unlike the C -odd/even case.
• Finally the Rinc value is:

Rinc =
2x2 + x4

2 + 2x2 + x4
.

• The obtained results are known in the literature but the derivation with two-particles
wave function was not presented.
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CPV and gold plated mode

Feynman diagram of B̄0 → J/ψK

aCP(∆t) :=
Nℓ+f − Nℓ−f

Nℓ+f + Nℓ−f
= ± sin 2β sin∆m∆t

1. Direct CPV occurs when

AB0→f ̸= AB̄0→f .

2. Indirect CPV in B0 − B̄0 mixing is small:

ACP =
N(B̄0 → ℓ+X )− N(B0 → ℓ−X )

N(B̄0 → ℓ+X ) + N(B0 → ℓ−X )
= O(10−4).

3. Gold plated mode is Υ → B0B̄0 → (J/ψK )(ℓ±X ).

4. Leads to the best accuracy of β angle theoretical
prediction and large enough branching to be
detected:

Br(B → J/ψK ) ≈ 10−3.
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C -even state correction to aCP

• Soft photon radiation in Υ decay leads to B0B̄0 final state with C = +1.
• Such correction can be understood as:

1. the bound on the accuracy of β angle measurement;
2. bound on the probability of soft photon radiation.

• Modification of the formulas obtained above:
1. keep CP-violating p/q parameter;
2. perform the integration only over t since aCP dependence on ∆t is measured;
3. introduce

AJ/ψK =
〈
J/ψK

∣∣Hint

∣∣B0
〉
, ĀJ/ψK =

〈
J/ψK

∣∣Hint

∣∣B̄0
〉
;

• Also let us define

λ =
q

p

ĀJ/ψK

AJ/ψK
, Imλ = ± sin 2β,

sign ± relates to KS ,KL respectively and |λ| ≈ 1.
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Correction to aCP calculation

• With the modifications mentioned we obtain for C -odd case:

Nodd
ℓ+f =

e−Γ∆t

2Γ
[1 + sin 2β sin∆m∆t].

Nodd
ℓ−f =

e−Γ∆t

2Γ
[1− sin 2β sin∆m∆t]

• For C -even case:

Neven
ℓ+f =

e−Γ∆t

2Γ
+

sin 2β

2Γ
e−Γ∆t

[
x

1 + x2
cos∆m∆t +

1

1 + x2
sin∆m∆t

]
,

Neven
ℓ−f =

e−Γ∆t

2Γ
− sin 2β

2Γ
e−Γ∆t

[
x

1 + x2
cos∆m∆t +

1

1 + x2
sin∆m∆t

]
.
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Correction to aCP calculation

• Let us suppose that there is an admixture η of C -even state to C -odd in Υ decay:

Nℓ±f = Nodd
ℓ±f + ηNeven

ℓ±f .

• For aCP(∆t) we obtain:

aCP(∆t) = sin 2β

[(
1− x2

1 + x2
η

)
sin∆m∆t +

x

1 + x2
η cos∆m∆t

]
• We can see that non-zero ∼ cos∆m∆t term appeared.

• Using experimental data the bound on correction value η can be extracted:

CJ/ψK0 = 0.004± 0.010;

SJ/ψK0 = 0.709± 0.011;

β =
(
22.6+0.5

−0.4

)◦
; x = 0.77;

η ≤ 0.05 at the level of 2σ.
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Penguin correction

B0 → J/ψK penguin diagram

• Our oscillation formulas also allow to take into
account penguin diagram contribution.

• This contribution might be of the same order of the
one from soft photon radiation.

• To perform the calculation one needs to introduce:

1. δ - difference of the tree and penguin strong phases;

2. γ = arg
V ∗
ubVud

−V ∗
cbVcd

is a unitarity triangle angle.

3. T and P are tree and penguin amplitudes without
phases.

aCP =

{
sin 2β

(
1− η

x2

1 + x2

)
− 2

P

T
cos δ sin γ cos 2β

}
sin∆m∆t+

+

{
η

x

1 + x2
sin 2β − 2

P

T
sin δ sin γ

}
cos∆m∆t
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Υ(4S) → B0B0 → J/ψKSJ/ψKS

• It is remarkable that

1. this decay holds only if CPV occurs;
2. this decay happens only in presence of B0 − B̄0 oscillations.

• With help of the C -odd two-particles wave function we obtain for the amplitude of the
decay:

⟨J/ψKS , J/ψKS |BB̄(t1, t2)⟩odd = −e−2iMt−Γt

(
i
p

q
A2

)[
1− λ2

]
sin

(
∆m∆t

2

)
.

• For the branching ratio of the considered decay one gets:

Br
(
Υ(4S) → B0B

0 → J/ψKSJ/ψKS

)
= 0.5 · 2 sin2 2β

(
x2

1 + x2

)
Br2(B0 → J/ψKS),

where factor 0.5 takes into account Br(Υ → B0B̄0) and integration over t and ∆t was
performed.
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Υ(4S) → B0B0 → J/ψKSJ/ψKS

• The process under consideration is quite rare since
Br

(
Υ(4S) → B0B 0 → J/ψKSJ/ψKS) ≈ 3.5× 10−8.

• The cross section of Υ(4S) production in e+e− collision is

σ = 2.1 · 106fb.

• The integrated luminosity of the SuperKEKB accelerator is supposed to be L = 50 ab−1.

• The efficiency of Belle II to the considered mode is ϵ = 0.04 (P.N. Pakhlov).

• Consequently for the number of events one obtains

N = ϵ · N(Υ(4S)) · Br(Υ(4S) → J/ψKSJ/ψKS) ≈ 150.

• If we take into account similar modes: ψ′KS , χc1KS it will double the number of events.
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The way of Br(Bs → µ+µ−) precise measurement

Normalization channel:

Br(Bq → X ) = Br(Bq′ → X ′)
fq′

fq

ϵX ′

ϵX

NX

NX ′
.

• fq is a fragmentation function
b → Bq;

• ϵX is an efficiency to X final state;

• NX is a total number of X events.

1. Rare Bs → µ+µ− decay → possible New
Physics:

Br = (3.63+0.15
−0.10)× 10−9 − SM;

Br = (3.01± 0.35)× 10−9 − LHC.

2. fs = (22.0+2.0
−2.1)% → it is important to decrease

the error.

3. Our approach based on analysis of
time-dependent numbers of dileptonic events

allows to extract Br
(
Υ(5S) → B

(∗)
s B̄

(∗)
s

)
with

1% accuracy.

4. Determine Br(Bs → DSπ)/Br(B
0 → Dπ) at

Belle II → Bs → DSπ as normalization
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Extraction of ϵss

• Two-particles wave functions allow to
calculate the time-dependant numbers
of dileptons dN±±/d∆t and dN±∓/d∆t
in Υ(5S) → BB̄X → ℓ±ℓ±X ′:

d(N+− + N−+ − N−− − N++)/d∆t

d(N+− + N−+ + N−− + N++)/d∆t
;

d(N++ + N−−)/d∆t

d(N+− + N−+ + N−− + N++)/d∆t
.

• The introduced ratios allow to decrease
the uncertainty.
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Extraction of ϵss

• Experimental fit of the ratios determines the relative probability of Υ(5S) → B
(∗)
s B̄

(∗)
s :

d(N+− + N−+ − N−− − N++)/d∆t

d(N+− + N−+ + N−− + N++)/d∆t
= C + A sin(∆m∆t + φ),

d(N++ + N−−)/d∆t

d(N+− + N−+ + N−− + N++)/d∆t
= C ′ − A

2
sin(∆m∆t + φ),

where

C = ϵ+− +

(
ϵ+ + ϵ−

)
2

4 + x2
, (1)

C ′ =
(ϵ00)

odd + (ϵ00)
even + (ϵSS)

odd + (ϵSS)
even

2
+

(
ϵ+ + ϵ−

)
1 + x2/2

4 + x2
. (2)
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Extraction of ϵss

• Using isotopic invariance we finally obtain:

2C ′ − C = ϵSS +

(
ϵ+ + ϵ−

)
x2

4 + x2
.

• The relative uncertainty from the value of the last term is less than 1%.

• It allows to determine branching ratio of the normalization channel:

Br(Bs → D−
s π

+) =
N(Bs → D−

s π
+)

N(B0 → D−π+)

N(B0)

N(Bs)
Br(B0 → D−π+).
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Conclusions

• The approach based on two-particles wave functions describing oscillating BB̄ system was
presented.

• The upper bound on the probability of soft photon radiation in Υ(4S) → B0B̄0γ decay
was determined.

• The branching ratio of Υ(4S) → B0B0 → J/ψKSJ/ψKS and the possible number of
such events which can be detected at Belle II were calculated.

• The model-independent method allowing to measure Br(Bs → µ+µ−) with 1% accuracy

by means of determining Br
(
Υ(5S) → B

(∗)
s B̄

(∗)
s

)
was suggested.
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