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Rare radiative leptonic decays Byq) — ("1~

@ Induced by the weak flavor-changing neutral currents (FCNC) b — s(d)

@ Forbidden at the tree level of SM = occur only via the diagrams with loops
New particles might contribute to the loops = potential New Physics

@ Small branchings of the order of 10~8 = 10710 are predicted in SM

@ Searched for with the same signature as Bs(d) — 1717 i.e. without reconstructing a photon. Currently,
from [LHCb (2022)], [LHCb (2022)] the upper limit is at

Br(BY - yuTu™) <2.0-107%  [myu, > 4.9 GeV]

@ Analogously to By — «{I(<*)7 ¢} 11t17, can be tested for the Lepton Flavor Violation
See discussion in [D. Guadagnoli, M. Reboud and R. Zwicky (2017)].

@ Theoretically, Bs(d) —> v decay has the same topology but its branching is enhanced by the factor 1/c.
Currently, from [Belle (2015)] the upper limit is Br(Bg — vy) <3.1-1076

10°dBr/dg? 10'°dBr/dg”
10¢ Bsoyu'u 107 By-yu'n
0} Bgoye'e o Byye'e

. U . !

¢[GeV?] GV
0.1 0s 1 5 10 15 0.1 05 1 5 10 15

Pic.: Differential branching fractions for B; — ~I117 (left) and By — ~IT1™ (right)
decays. The figures are taken from [A. Kozachuk, D. Melikhov and N. Nikitin (2018)]. 2/14
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FCNC b — s(d)y and b — s(d) It~ transitions in SM

@ The dominant contribution to b — s~ amplitude comes from a penguin with top quark. At scale u ~ my
the heavy degrees of freedom (t-quark, W-boson) are integrated out, thus leading to the local operator O

(b—sy) _ _GF
o Heop 73 VieVis —5 o2 C7(p) O7+,
> G
b, s O7y =50uy (L+75)b- F*Y

@ The top-quark contribution to b — s 1t amplitude is generated not only by the electromagnetic penguin
operator O7., but also by the operators Ogy, and O1g 4 described by the box (a) and penguin (b) diagrams
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@ The subleading contribution to b — s~ and b — s +ti- amplitudes comes from a charm-quark loop. The
four-fermion interaction is described by the linear combination of @ and O3 local operators, that can be
rearranged into the color singlet-singlet and octet-octet operators
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Top and charm contributions to By — {11~ amplitude
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Pic.: Diagrams describing the top-quark contributions. Dashed circle denotes the O7 operator, solid circle — Og
operator. In diagrams (a) and (b) the real photon is emitted by spectator s-quark; in diagram (c) the real photon is
emitted from the penguin. We do not show 1/m,-suppressed diagrams where real or virtual photon is emitted by
spectator b-quark.
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Pic.: Diagrams describing the charm-quark contributions: (a) and (b) — Nonfactorizable contributions induced by
the [8 X 8] part of the Hamiltonian (solid squares), (c) Factorizable contribution induced by the [1 X 1] part of the
Hamiltonian (empty squares); a similar factorizable contribution with the real photon emitted from the charm-quark
loop vanishes and is not shown.
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Nonfactorizable charm

i Yorr q
AL = { Hpn(a,d)ep(@) en(d) + Hpn (@', a)ep(a’) en(a) } &

B 1l e — — Q9 Q
‘Afxf i;;;rm) 2 {Hpn((Iaql)l'Yplsn(q/) +Hpn(q/aQ)Ep(q/)l'7nl} Bb(X) 'Yv

Since the top-quark and the charm-quark amplitudes, B(p) b(0)
(Bs—=y7)  4(Bs—=yll) 4 (Bs—vv) 4 (Bs—ll)
Atop  Atop + At charm * Anf Charm

have the similar structure, it is convenient to describe the effect

of charm as a (non-universal) addition to the Wilson coefficient C7, ;(y)

i

csff = o7 + AfT,) Cr.

Pic.: One of the diagrams describing charm
loop contribution to Bg — ~ 'y(*) decay
o H,, tensor in a T-product form: via nonfactorizable soft gluon exchange.

weak

Hon(a' a) = i [ dze'” 0| (eQue(z)vpe(a) i [ ay L i1 ), [ do Lace(@). eQu 507 5(0)} Ba(0)

e Derived expression for the H,, tensor in Standard Model:

G 1 . .
Hpn(q/,q) = *TZVcbV:s‘g(?Cz)Qch X (27)8 /dkdyﬁil(kiq/)ydzdﬁeimw
phvp(ab) n k+ms 5.,a pb -
(r, @)(0]5(y)~y P a—Y kz"/ (1 =~")t" B, (2)b(0)|Bs(p))-

@ In the case of at least one real photon (q'2 =0 or q2 = 0), Hyy contains only 2 form factors Hl‘\}FA(qg, q'2),

!’ !
(o0 00~ sy00)]

Gr x 2
Hpn(q',q) = /5 VerVese (2C2)QsQc |:EP77(1/Q
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o Two one-loop diagrams with the (VV A)
structure give equal contributions to the

three-point function prve (ab),

. F’pr(ab) can be parametrized with

three form factors Fp,1,2(k,q). This a

representation works in the region of the t ’Y“’Y5 t ,Y'YS
external momenta far below the
thresholds, ¢2, k2, (k + q)? < 4m2.

T . . b
Pic.: The (VV A) triangle one-loop diagrams for T'L)” (ad),

For the parametrization
THYP (1, q) = —i (5P + ™) P59 Fy — i (qze;w,m . G;Auqrf) Py (Hzeypvq B Kueu,ph',q) 7
the convolution with the gluon field B, (z) might be fully given in terms of the gluon field strength G, o (),

. 1 o
/dne*m rere (e (g q)BY (z)de = S /dm* THYPY (5, ) Ge o (2)da,

and therefore | no explicit use of any specific gauge for the gluon field is necessary. ‘

THYPS (e g) = (kP + ) P79 Fo + (qpe;u/aq +q26;1.1/pa) Fi + (kPP 4 o OBV _ g OBVP)

where the form factors Fy 1 o are functions of three independent invariant variables q2, %2, and KQ:

1 1—-¢
1 A (&,
Fi (wra.®) = = [dae [ an—s i&n) S, i=o012,
w2 3 s m2 —2&n kg —&(1 —&)q® —n(l —n)k

Ag=—€n, A1 =E0-n—-§), Aa=n(l-n-2F§).
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Double collinear LC configuration

x0
e In the HQ limit the double collinear kinematics
dominates the NF charm-loop contribution to FCNC
B-decay amplitudes. y
e Applied for the calculation of NF charm-loop form
factors in Bs — v+ decay. It was shown that the
leading contribution is proportional to the following X3
combination of the 3DAs:

. s 9 xyu ~ 7y [gluon coordinate],
Yat+ ¥y +2(W+Ya = Ya) ~ (Ap + An)- yu ~ ny [light quark coordinate],

[Q. Qin, Y.-L. Shen, C. Wang and Y.-M. Wang (2023)] n2=n%2=0 andln"—l =2,

v = pu/Mp = 5(nu + np).

The B-meson three-particle BS amplitude is parametrized by
(015(117)Gua (T27)T b(0)| Bs (p)) = %/D(w,A)e*"“”*”zwﬁ{vsru +9)
X | (vpva = var)[Ta — Tyl —iovaPy+(nuva — namw) (Ya + W) +icyans n'7?1°Va
(e — Aamw) (Ya + W) +icyans iy 7 °Va + .. ] }

where D(w, \) = dw dX 0(w)0(N)0(1 — w — N).
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https://arxiv.org/abs/2207.02691

Collinear LC configuration

e The amplitude differs by terms O(Ap, /Mpg) from X0
the amplitude in the double-collinear approximation.

e Applied for calculation of NF charm-loop form factors
in B— KM+~ B— K*v and Bs — ¢t~ decays. x

[A. Khodjamirian, T. Mannel and N. Often (2007)]
[A. Khodjamirian, T. Mannel, A. Pivovarov and Y.-M. Wang (2010)] 3
[N. Gubernari, D. van Dyk and J. Virto (2020)]

e {U 4, Uy} + six 3DAs {XA,YA,XA,Y/A,W,Z}

2=y?>=0andz~y
parametrizing the kinematics-dependent part.

y r=uy withu#0= 2y =0

fe M

<0\§(y)G,,a(uy)Fb(O)\BS(p» = 1

[ p. A)e*“”*i‘””“’Tr{wSr<1 +9)

1 ) (yvPa — YapPv) .
X [(pu"/a—Pa’Yu)i[\I’A—\I’V]—ZU,,Q\I/V—iV o v (XA_;'_ﬁ]qu)
Mp yp yp
n (yvva — Yavv) My (YA Wy l]\lBZ) ~ieyaps
yp yp

B A B
yhp? 5 ) o5 o
VX4 +icpapns 'YOJMBYA]}v

where the continuity and regularity of 3BS requires the following constraints on 3DAs:

/D(w,)\) {Xa, YA, X4, YA, Z, W} =0, /D(w.)\)w {z,Ww} =0, /D(w. MNA{z, W} =o0.
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https://arxiv.org/abs/hep-ph/0611193v2
https://arxiv.org/abs/1006.4945
https://arxiv.org/abs/2011.09813

Noncollinear LC configuration

o Generic kinematics. Proposed recently

in [D. Melikhov (2022), D. Melikhov (2023)].

e An accurate account for the O(Ap,/Mp) terms.
{4, ¥y} + 2 x 6 3DAs

{Xff’y)7 Y‘gzvy) , ng’y), Y/jgzay)7 V[/(z,'y)7 Z(z,y)}

z [gluon coordinate] and
) y [light quark coordinate]
are independent coordinates

parametrizing the kinematics-dependent part

(015(9)Gra (2)T b(0)|Bs (p)) = "B—B/D(w A) e AupTiene Tr{%mw)

1 ) TyPa — TaPu
X {(py'}’a —PaYr) —[Ya — ¥y] — ldum‘l’v—g (X(T> + — z M W(I))
Mp zp

(TvYa —
xp

B ohaB _
Taw) (Y(T) +w@ +— ¢ Mz Z(’))ﬂ'emw zxz X ficpans Z VP Mmpv {4 .. ]}

where the continuity and regularity of the 3BS requires the stronger constraints on 3DAs:

2o =X (=) 2wo— W)
/ dw X' (w,A\) =0 VA, / (1/\X (w,A\) =0 Vw,
0 0
200 —A 200 —w
rlww”Z(m)(w‘/\) =0 VA, / dk/\”’Z(‘y)(w‘/\) =0 VYw, n =0,1.
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https://arxiv.org/pdf/2208.04907
https://arxiv.org/abs/2302.13673

Model for the B-meson 3DAs

o Each of 3DAs is a function of w and X\, which are the fractions of B-meson momentum carried
by gluon and light quark, respectively. The power scaling in w and X is related to the conformal
spins of the fields and remains the key property of the model.

Local Duality model fi V. Braun, Y. Ji and A. Manashov (2017
Y
Each of DAs is written as an expansion in functions with definite twist. The twists 3 and 4 are
complemented by the higher twists 5 and 6 as following:
105004 -2%) | 5 2
= Wkw (2wp —w — A)“ 0 (2wg —w — A) ba + b5 From QCD
2 422 YaviwA) = g sum rules
35(A A ’ '
64 = Z0B0p) Ev+2H)w2(2wo*w*X)39(2w0*w*>\> ?
32w Mp A2~ 92)\2
o H — “"E
~ A% A
164 B A9 [A. Grozin,
hy ~ )\%I Aw, M. Neubert
é (% +A2) A (1997)]
5 E H ) . n - T e T 7 [T. Nishikawa,
B )\2E 9, ogether with ¢3, ¢4 contribute to { A YA, XA,Ya, W, }, K. Tanaka
_ o (2014)]
Y5 ~ A w,
$6 ~ (A% = Ah),
5 A
o= 228
2mp,

o For {X4,Ya, Xa,Ya, W, Z} the correction at large w and X is applied = our corrected
model reproduces well the collinear DA magnitudes and power behaviour at small w and A. 19,14
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Calculated form factors. HN¥(0,¢?) = Rip(0,¢*)A\% + Rin(0,d?))\%, i=AV

200

~ 200 200
10%Run ve(0,6%) 10°Ran e(0.9%) 10°Run ve(0,0%)
175 v ve(0.9° 175 an Ae(0.9° 175 H ve(0.9°
. 5 Ay only
150 10°Rye (0,0)=138.1 150 10%Rae (0,0)=134.7 150 10°Rye (0,0)=159.1
125 10%Ryy (0,0)=128.1 125 10°R (0.0)=131.0 125 10°Ry4(0,0)=121.6
100 100 100
s 7 7
. Rue(0,9%) Rue(0.9%)
50 ) 50 0D 50
Run(0.0%) w0 Run (0.0%)
2 2 25
q2(GeV?] q%GeV?| q2(GeV?|
-5 -4 ) -2 -1 0 -5 4 -3 -2 -1 0 =5 -4 -3 -2 -1 0
(@) (b) (<)
200 150 500
10°Ran 4 (0.0°) 10°Rig+ 2R GeV ™' |
175 170 430
Uy only s
150 10°Rae (0,0)=158.7 160 460
5 10%Ra(0.0)=123.1
125 150 440 @
%
100 140 0
75 130 o
S Rre(0.0%)
50 ) 120
i (0.69) 380
25 1o .
q°1GeV?] Ap,[GeV] 360 Ag,[GeV]
-5 -4 ) -2 -1 0 03 035 04 045 0s 03 035 04 045 05

(d) () (f)

Pic.: (a—d) panels. The contributions R; and R, to the form factors H; [i = A, V] as functions of ¢’2.
Dashed lines show the calculation results and solid lines show the fits. (a,b): the appropriate modifications of the
3DAs X 5, Y4, etc. are taken into account. (c,d): Only the contributions of ¥ 4 and ¥y, are taken into account.

Pic.: (e,f) panels. The dependence on parameter A of the form factors: (e) R;g ;g (0,0), i = A, V; (f) Linear
combination R; 5 (0,0) + 2R, ;7 (0, 0) that determines AC'; taking into account approximate relation A%—I ~ 2/\2E.
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Calculated form factors. HNF(¢2,¢"?) = Ri(q?, %))\,
i= AV

Ri(¢*,q?) = Rie(¢*,4"*) + 2Riu (4%, ¢%),
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Pic.: R;(q2,0) dependence (a,b) and R; (0, ¢’2) dependence (c,d) for i = V, A. Solid lines are the fits, and
dashed lines present the results of direct calculations in the case of R;(0, q
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Results for the 6NFC; correction

Adding charm contributions to the top contributions leads to the following sum in the form factors Ai(q2)
[i = A, V] parametrizing the total By — 'yl+l7 amplitude,

HVF (q?,0) + HIF (0,4?)

2
s 167700 3 )

q q
N——
Penguin with t-quark Box with t-quark

20 Fi(q*,0) #HE (@, 0)
A(d%) = ?;mb (FTi(qz, 0) + Fri (0, qz)) + Co— " + n? 2
‘B

Factorizable charm Nonfactorizable charm

from which the relative correction is defined as

NF
H 0,0
Hi(0.9) for the case of B — v
C ; ; F1(0,0)
sNFo., — gn2 2 ) I (1) _
NFop = 872 QuQe P, where p) = T o
Crmy, M (a%,0)+H Y (0,6%) +—
) 5+~ for the case of By — 1™l
Fp;(q?,0)+Fp;(0,9%)
o Numerically, 6§FC7(q2) ~ 6‘1\,IFC7((12). e The nearest hadron singularities are at /UW:IZ\,» and /\13/,”/_.
08 01 1
10%peclGev] G (@2, 0)
) 08 L
06 ACN
) // 06
04 00s
04
02
02
fnfe] . C1Gev?) GV
03 035 04 045 05 055 0.6 0 02 04 0.6 08 1 0 3 4 5 6 7 8 9
(a) (b)

Pic.: (a) The functions pgic) at g2 = 0 versus ABgs @ = V, A. (b—c) The relative NF correction S‘I\,IFC7(q2):

(b) the full result at 0 < ¢2 < 41VII2(; (<) 5‘1\/IFC'7(q2,0) which dominates in 6‘1\}FC7(¢12) at g2 > 3 GeV2.
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Conclusions

(i) We derived and made use of the expression for the (VV A) quark loop that is fully given in terms of the gluon
field strength G, (x). This has an advantage that no explicit use of any specific gauge for gluon field is necessary.

(ii) We studied the generic noncollinear 3BS of the B-meson. This quantity contains new Lorentz structures and
new 3DAs compared to collinear and double-collinear 3BS. We took into account constraints from the requirement
of analyticity and continuity and implemented proper modifications of the corresponding 3DAs X ; (w, \) at large
values of their arguments.

o We derived analytical expressions for the form factors ’H,IL-\IF(qQ, q'2), i = A, V, describing NF contribution of
charm loops to the amplitude of the B; meson transition into two photons

NF, 2 2 2 2 2 2 2 2 .
Hi' (6%, d?) =25 Rip(d®,d) + \gRin(a%,d"%), i=AV

We interpolated the results of ’H?IF (¢2, q/z) calculations in the (q27 q'?) rectangular region [sufficiently far from the
quark thresholds] with a formula, which takes into account the presence of the poles at q2 = A{g/w and q/2 = I\/Iq%.

e The contribution of NF charm in B; — ~ll decay can be conveniently treated as the q2—correction to the Wilson
coefficient C7, while the contribution of F charm — as the g“-dependent correction to the Wilson coefficient Cyg,
such that both relative corrections are positive:

ANFCr(g?)/Cr > 0 at ¢ < AMZ, ‘ aFCo(d®)/Co > 0at ¢® < M3,

e Our numerical results for the form factors ’H.?IF(qQ, q'2) depend sizeably on the precise value of the parameter
AB, and exhibit about 10% accuracy for a fixed value of A . For the B — v+ amplitude an explicit 6C7(Ap,)

dependence was calculated, from which for our benchmark point )\OBq = 0.45 GeV we found

’ sNF o7 (A%,) = 0.045 + 0.004.

For A, in the range 0.3 < Ap_ (GeV) < 0.6, §C7 covers the range 2--10 %. 1414



Thank you for your attention!

Results of this work are published in

@ Phys. Rev. D 108, 094022 (2023)

@ Phys. Rev. D 109, 114012 (2024)
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Physics and Cosmology” of the National Center for Physics and
Mathematics.
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