

NLO solutions of DGLAP evolution equations in QED

Andrej Arbuzov

BLTP, JINR, Dubna

based on works with U. Voznaya: JPG'2023, PRD'2024, PRD'2024 (supported by RSF grant N 22-12-00021)

Efim Fradkin Centennial Conference

2nd September 2024

Electron is as inexhaustible as atom

Outline

[QED](#page-8-0)

Motivation

- Development of physical programs for future high-energy HEP colliders
- Having high-precision theoretical description of basic e^+e^- and other HEP processes is of crucial importance
- as for solving problems of the Standard Model, as for new physics searches
- Two-loop calculations are still in progress, and higher-order QED corrections are also important
- The formalism of QED parton distribution functions gives a fast estimate of the bulk of higher-order effects
- Parallels between QCD and QED

Future *e* +*e* [−] collider projects

Linear Colliders

• ILC, CLIC

Etot

- ILC: 91; 250 GeV -1 TeV
- CLIC: $500 \text{ GeV} 3 \text{ TeV}$

 $\mathcal{L} \approx 2 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Stat. uncertainty $\sim 10^{-3}$

Circular Colliders

- FCC-ee, CEPC
- *Z*-factory (Protvino)
- $\mu^+\mu^-$ collider

Etot

• 91; 160; 240; 350 GeV

 $\mathcal{L} \approx 2 \cdot 10^{36} \text{ cm}^{-2} \text{s}^{-1}$ (4 exp.)

Stat. uncertainty $\sim 10^{-6}$

Tera-Z mode!

Super Charm-Tau Factory Projects

Budker Institute of Nuclear Physics $+$ Sarov and/or China

Colliding electron-positron beams with c.m.s. energies from 2 to 7 GeV with unprecedented high luminosity 10^{35} *cm*^{−2}*c*^{−1}

The electron beam will be longitudinally polarized

The main goal of experiments at the Super Charm-Tau Factory is to study the processes charmed mesons and tau leptons, using a data set that is 2 orders of magnitude more than the one collected by BESIII

Estimated experimental precision

The estimated error for the theoretical predictions of these quantities is given, under the assumption that $O(\alpha \alpha_s^2)$, fermionic $O(\alpha^2 \alpha_s)$, fermionic $O(\alpha^3)$, and leading four-loop corrections entering through the ρ parameter will become available.

To do list for QED

- Compute 2-loop QED radiative corrections to differential distributions of key processes: Bhabha scattering, muon decay, $e^+e^- \to \mu^+\mu^-, e^+e^- \to \pi^+\pi^-, e^+e^- \to ZH$ etc.
- Estimate higher-order contributions within some approximations
- Account for interplay with QCD and electroweak effects
- Construct a reliable Monte Carlo code(s)

Perturbative QED (I)

Fortunately, in our case the general perturbation theory can be applied:

$$
\frac{\alpha}{2\pi} \approx 1.2 \cdot 10^{-3}, \quad \left(\frac{\alpha}{2\pi}\right)^2 \approx 1.4 \cdot 10^{-6}
$$

Moreover, other effects: hadronic vacuum polarization, (electro)weak contributions, hadronic pair emission, etc. are small in, e.g., Bhabha scattering and can be treated one-by-one separately

Nevertheless, there are some enhancement factors:

1) First of all, the large logarithm $L \equiv \ln \frac{\Lambda^2}{m_e^2}$ where $\Lambda^2 \sim Q^2$ is the momentum transferred squared, e.g., $L(\Lambda = 1 \text{ GeV}) \approx 16$ and $L(\Lambda = M_Z) \approx 24.$

2) The energy region at the *Z* boson peak $(s \sim M_Z^2)$ requires a special treatment since factor M_Z/Γ_Z appears in the annihilation channel

Perturbative QED (II)

Methods of resummation of higher-order QED corrections

- Resummation of vacuum polarization corrections (geometric series)
- Yennie–Frautschi–Suura (YFS) soft photon exponentiation and its extensions, see, e.g., PHOTOS
- Resummation of leading logarithms via QED structure functions or QED PDFs (E.Kuraev and V.Fadin 1985; A. De Rujula, R. Petronzio, A. Savoy-Navarro 1979)

N.B. Resummation of real photon radiation is good for sufficiently inclusive observables. . .

Leading and next-to-leading logs in QED

The QED leading (LO) logarithmic corrections

$$
\sim \left(\frac{\alpha}{2\pi}\right)^n \ln^n \frac{s}{m_e^2}
$$

were relevant for LEP measurements of Bhabha, $e^+e^- \rightarrow \mu^+\mu^-$ etc. for $n \leq 3$ since $\ln(M_Z^2/m_e^2) \approx 24$

NLO contributions

$$
\sim \left(\frac{\alpha}{2\pi}\right)^n \ln^{n-1} \frac{s}{m_e^2}
$$

with at least $n = 3$, 4 are required for future e^+e^- colliders

In the collinear approximation we can get them within the NLO QED structure function formalism

∼

- F.A.Berends, W.L. van Neerven, G.J.Burgers, NPB'1988
- A.A., K.Melnikov, PRD'2002; A.A. JHEP'2003

QED NLO master formula

The NLO Bhabha cross section reads

$$
d\sigma = \sum_{a,b,c,d=e,\bar{e},\gamma} \int_{\bar{z}_1}^{1} dz_1 \int_{\bar{z}_2}^{1} dz_2 \mathcal{D}_{ae}^{\text{str}}(z_1) \mathcal{D}_{b\bar{e}}^{\text{str}}(z_2)
$$

$$
\times \left[d\sigma_{ab\to cd}^{(0)}(z_1, z_2) + d\bar{\sigma}_{ab\to cd}^{(1)}(z_1, z_2) \right]
$$

$$
\times \int_{-}^{1} \frac{dy_1}{\gamma_1} \int_{-}^{1} \frac{dy_2}{\gamma_2} \mathcal{D}_{ec}^{\text{frg}}\left(\frac{y_1}{\gamma_1}\right) \mathcal{D}_{\bar{e}d}^{\text{frg}}\left(\frac{y_2}{\gamma_2}\right)
$$

 \setminus

$$
\alpha^2 L^2
$$
 and $\alpha^2 L^1$ terms are completely reproduced [A.A., E.Scherbakova,
JETP Lett. 2006; PLB 2008] || $\overline{e} \equiv e^+$

*Y*2

*Y*1

¯*y*1

*Y*1

 $+O\left(\alpha^n L^{n-2}, \frac{m_e^2}{2}\right)$

¯*y*2

*Y*2

High-order ISR in e^+e^- annihilation

$$
\frac{d\sigma_{e^+e^-\to\gamma^*}}{ds'} = \frac{1}{s}\sigma^{(0)}(s') \sum_{a,b=e^-, \gamma, e^+} D_{ae^-} \otimes \tilde{\sigma}_{ab\to\gamma^*} \otimes D_{be^+}
$$

Contributions from $D_{e^-e^+}$ and $D_{e^+e^-}$ are missed in [J. Ablinger, J. Blümlein, A. De Freitas and K. Schönwald, "Subleading Logarithmic QED Initial State Corrections to $e^+e^- \to \gamma^*/Z^{0^*}$ to $O(\alpha^6 L^5)$," NPB 955 (2020) 115045]

QED NLO DGLAP evolution equations

$$
\mathcal{D}_{ba}\left(x,\frac{\mu_R}{\mu_F}\right) = \delta_{ab}\delta(1-x) + \sum_{c=e,\gamma,\bar{e}} \int_{\mu_R^2}^{\mu_F^2} \frac{dt}{t} \int\limits_x^1 \frac{dy}{y} P_{bc}(y,t) \mathcal{D}_{ca}\left(\frac{x}{y},\frac{\mu_R^2}{t}\right)
$$

 μ_F is a factorization (energy) scale

 μ_R is a renormalization (energy) scale

Dba is a parton density function (PDF)

 P_{bc} is a splitting function or kernel of the DGLAP equation

N.B. In QED $\mu_R = m_e \approx 0$ is the natural choice

QED splitting functions

The perturbative splitting functions are

$$
P_{ba}(x, \bar{\alpha}(t)) = \frac{\bar{\alpha}(t)}{2\pi} P_{ba}^{(0)}(x) + \left(\frac{\bar{\alpha}(t)}{2\pi}\right)^2 P_{ba}^{(1)}(x) + \mathcal{O}(\alpha^3)
$$

e.g.
$$
P_{ee}^{(0)}(x) = \left[\frac{1+x^2}{1-x}\right]_+
$$

They come from direct loop calculations, see, e.g., review "Partons in QCD" by G. Altarelli. For instance, $P_{ba}^{(1)}(x)$ comes from 2-loop calculations.

The splitting functions can be obtained by reduction of the ones known in QCD to the abelian case of QED.

 $\bar{\alpha}(t)$ is the QED running coupling constant in the $\overline{\text{MS}}$ scheme

Running coupling constant

Compare QED-like

$$
\bar{\alpha}(t) = \alpha \left\{ 1 + \frac{\alpha}{2\pi} \left(-\frac{10}{9} + \frac{2}{3}L \right) + \left(\frac{\alpha}{2\pi} \right)^2 \left(-\frac{13}{27}L + \frac{4}{9}L^2 + \dots \right) + \dots \right\}
$$

and QCD-like

$$
\bar{\alpha}(t) = \frac{4\pi}{\beta_0 \ln(t/\Lambda^2)} \left[1 - \frac{\beta_1}{\beta_0^2} \frac{\ln[\ln(t/\Lambda^2)]}{\ln(t/\Lambda^2)} + \ldots \right]
$$

Note that " $-10/9$ " could have been hidden into Λ

In QED $\beta_0 = -4/3$ and $\beta_1 = -4$

$\mathcal{O}(\alpha)$ matching

The expansion of the master formula for ISR gives

$$
d\sigma_{e\overline{e}\to\gamma^*}^{(1)} = \frac{\alpha}{2\pi} \bigg\{ 2LP^{(0)}\otimes d\sigma_{e\overline{e}\to\gamma^*}^{(0)} + 2d_{ee}^{(1)}\otimes d\sigma_{e\overline{e}\to\gamma^*}^{(0)} \bigg\} + d\,\bar{\sigma}_{e\overline{e}\to\gamma^*}^{(1)} + \mathcal{O}\left(\alpha^2\right)
$$

We know the massive $d\sigma^{(1)}$ and massless $d\bar{\sigma}^{(1)}$ ($m_e \to 0$ with $\overline{\text{MS}}$) subtraction) results in $\mathcal{O}(\alpha)$. E.g.

$$
\frac{d\sigma_{e\overline{e}\to\gamma^*}^{(1)}}{d\sigma_{e\overline{e}\to\gamma^*}^{(0)}} = \frac{\alpha}{\pi} \left[\frac{1+z^2}{1-z} \right]_+ \left(\ln \frac{s}{m_e^2} - 1 \right) + \delta(1-z) (\dots), \quad z \equiv \frac{s'}{s}
$$

Scheme dependence comes from here

Factorization scale dependence is also from here

N.B. "Massification procedure"

Factorization scale choice

We apply the BLM-like prescription, i.e., hide the bulk of one-loop correction into the scale

For *e* +*e* [−] annihilation

$$
\frac{d\sigma_{e\overline{e}\to\gamma^*}^{(1)}}{d\sigma_{e\overline{e}\to\gamma^*}^{(0)}} = \frac{\alpha}{\pi} \left[\frac{1+z^2}{1-z} \right]_+ \left(\ln \frac{s}{m_e^2} - 1 \right) + \delta(1-z) (\dots) \Rightarrow \mu_F^2 = s \quad \text{or } \mu_F^2 = \frac{s}{e}
$$

Remind Drell-Yan where we usually take $\mu_{\overline{F}}^2 = s' \equiv zs$, i.e., the enegry scale of the hard subprocess (?!)

For muon decay $\mu_F = m_\mu$ is good, but $\mu_F = m_\mu z(1-z)$ is better. It was cross-checked with the help of (partially) known two-loop results [K.Melnikov et al. JHEP'2007]

Iterative solution

Analytic expressions for NLO "*e* in e " and " γ in e " PDFs and fragmentation functions [A.A., U.Voznaya, JPG 2023]

$$
\begin{split} &\mathcal{D}_{ee}(x,\mu_F,m_e) = \delta(1-x) + \frac{\alpha}{2\pi}LP_{ee}^{(0)}(x) + \frac{\alpha}{2\pi}d_{ee}^{(1)}(x,m_e,m_e) \\ &+ \left(\frac{\alpha}{2\pi}\right)^2 L^2 \left(\frac{1}{2}P_{ee}^{(0)} \otimes P_{ee}^{(0)}(x) + \frac{1}{2}P_{ee}^{(0)}(x) + \frac{1}{2}P_{e\gamma}^{(0)} \otimes P_{\gamma e}^{(0)}(x)\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^2 L \left(P_{e\gamma}^{(0)} \otimes d_{\gamma e}^{(1)}(x,m_e,m_e) + P_{ee}^{(0)} \otimes d_{ee}^{(1)}(x,m_e,m_e) - \frac{10}{9}P_{ee}^{(0)}(x) + P_{ee}^{(1)}(x)\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^3 L^3 \left(\frac{1}{6}P_{ee}^{(0)} \otimes P_{ee}^{(0)} \otimes P_{ee}^{(0)}(x) + \frac{1}{6}P_{e\gamma}^{(0)} \otimes P_{\gamma\gamma}^{(0)} \otimes P_{\gamma e}^{(0)}(x) + \dots\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^3 L^2 \left(\frac{539}{27} + \frac{11}{3z} - 8\ln^3(1-z)\frac{1+z^2}{1-z} + \dots\right) \\ &+ \mathcal{O}(\alpha^2 L^0, \alpha^3 L^1, \alpha^4 L^4) \end{split}
$$

The large logarithm $L \equiv \ln \frac{\mu_F^2}{\mu_R^2}$ with factorization scale $\mu_F^2 \sim s$ or $\sim -t$; and renormalization scale $\mu_R = m_e$.

N.B. A mistake in $\mathcal{O}(\alpha^3 L^3)$ is corrected.

Higher-order effects in e^+e^- annihilation

$$
d\sigma_{e\bar{e}\to\gamma^*}^{\text{NLO}} = d\sigma_{e\bar{e}\to\gamma^*}^{(0)} \left\{ 1 + \sum_{k=1}^{\infty} \left(\frac{\alpha}{2\pi} \right)^k \sum_{l=k-1}^k \delta_{kl} L^l + \mathcal{O}(\alpha^k L^{k-2}) \right\}
$$

[A.A., U.Voznaya, arXiv:2405.03443 (PRD'2024)]

ISR corrections to $e^+e^- \to Z(\gamma^*)$ (√ $s = M_Z$

LO $\mathcal{O}(\alpha^n L^n)$ and NLO $\mathcal{O}(\alpha^n L^{n-1})$ ISR corrections in % at the *Z*-peak and $z_{\rm min} = 0.1$

 $N.B. O(\alpha^2 L^0$ ISR corrections are known [Berends; Blümlein]

Impact of new corrections on LEP results?!

PRELIMINARY NUMBERS

Higher-order effects in muon decay spectrum

Example for unpolarized case

$$
d\Gamma_{\mu \to e\nu\bar{\nu}}^{\text{NLO}} = d\Gamma_{\mu \to e\nu\bar{\nu}}^{(0)} \left\{ 1 + \sum_{k=1}^{\infty} \left(\frac{\alpha}{2\pi} \right)^k \sum_{l=k-1}^k \frac{\hat{F}_{kl}}{f_0} \hat{L}^l + \mathcal{O}(\alpha^k L^{k-2}) \right\}
$$

[A.A., U.Voznaya, PRD'2024]

- ISR in electron-positron annihilation $e^+e^- \to \gamma^*, Z^*$ "Higher-order NLO initial state radiative corrections to *e* +*e* − annihilation revisited" [A.A., U.Voznaya, arXiv:2405.03443 (to appear in PRD)]
- $\mathcal{O}(\alpha^3 L^2)$ corrections to muon decay spectrum: relevant for future experiments [A.A., U.Voznaya, PRD'2024]
- Implementation into ZFITTER, production of benchmarks, tuned comparisons with KKMC which uses YFS exponentiation for ISR
- Application to different e^+e^- annihilation channels and asymmetries within the SANC project
- $\mathcal{O}(\alpha^3 L^2)$ corrections to muon-electron scattering for MUonE experiment (in progress)

QED PDFs vs. QCD ones

Common properties:

- \bullet QED splitting functions $=$ abelian part of QCD ones
- The same structure of DGLAP evolution equations
- The same Drell-Yan-like master formula with factorization
- Factorization scale and scheme dependence

Peculiar properties:

- QED PDFs are calculable
- QED PDFs are less inclusive
- QED renormalization scale $\mu_R = m_e$ is preferable
- QED PDFs can (do) lead to huge corrections
- Massification procedure

Outlook

- Parton picture is there also in QED
- QED PDF are similar to QCD ones, but with some differences
- QED cross-checks QCD
- Having high theoretical precision for the normalization processes $e^+e^- \to e^+e^-$, $e^+e^- \to \mu^+\mu^-$, and $e^+e^- \to 2\gamma$ is crucial for future *e*⁺*e*[−] colliders, especially for the Tera-Z mode
- We need complete two-loop QED results, but (sub)leading higher order corrections are also numerically important
- New Monte Carlo codes are required
- Semi-analytic codes are relevant for estimates and benchmarks

ISR corrections to $e^+e^- \to Z(\gamma^*)$ (√ $s = 350 \text{ GeV}$

LO $\mathcal{O}(\alpha^n L^n)$ and NLO $\mathcal{O}(\alpha^n L^{n-1})$ ISR corrections in % at $\sqrt{s} = 350$ GeV and $z_{\rm min} = 0.1$

PRELIMINARY NUMBERS