Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
●000	0000	00	00000000000	0000

NLO solutions of DGLAP evolution equations in QED

Andrej Arbuzov

BLTP, JINR, Dubna

based on works with U. Voznaya: JPG'2023, PRD'2024, PRD'2024 (supported by RSF grant N 22-12-00021)

Efim Fradkin Centennial Conference

2nd September 2024

Andrej Arbuzov

DGLAP in QED

Electron is as inexhaustible as atom

Andrej Arbuzov

DGLAP in QED

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
0000	0000	00	00000000000	0000

Outline

3 QED

Motivation $000 \bullet$	e^+e^- colliders 0000	QED oo	Higher order logs 00000000000	Outlook 0000

Motivation

- Development of physical programs for future high-energy HEP colliders
- Having high-precision theoretical description of basic e^+e^- and other HEP processes is of crucial importance
- as for solving problems of the Standard Model, as for new physics searches
- Two-loop calculations are still in progress, and higher-order QED corrections are also important
- The formalism of QED parton distribution functions gives a fast estimate of the bulk of higher-order effects
- Parallels between QCD and QED

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
0000	●000	00	00000000000	0000

Future e^+e^- collider projects

Linear Colliders

• ILC, CLIC

 E_{tot}

- ILC: 91; 250 GeV $1~{\rm TeV}$
- \bullet CLIC: 500 GeV 3 TeV

 $\mathcal{L}\approx 2\cdot 10^{34}~\mathrm{cm}^{-2}\mathrm{s}^{-1}$

Stat. uncertainty $\sim 10^{-3}$

Circular Colliders

- FCC-ee, CEPC
- Z-factory (Protvino)
- $\mu^+\mu^-$ collider

 E_{tot}

• 91; 160; 240; 350 GeV

 $\mathcal{L}\approx 2\cdot 10^{36}~\mathrm{cm}^{-2}\mathrm{s}^{-1}~(4~\mathrm{exp.})$

Stat. uncertainty $\sim 10^{-6}$

Tera-Z mode!

Motivation	e^+e^- colliders $0 \bullet 0 \circ$	QED	Higher order logs	Outlook
0000		oo	00000000000	0000
0000	000	00	000000000000000000000000000000000000000	0000

Super Charm-Tau Factory Projects

Budker Institute of Nuclear Physics + Sarov and/or China

Colliding electron-positron beams with c.m.s. energies from 2 to 7 GeV with unprecedented high luminosity $10^{35}cm^{-2}c^{-1}$

The electron beam will be longitudinally polarized

The main goal of experiments at the Super Charm-Tau Factory is to study the processes charmed mesons and tau leptons, using a data set that is 2 orders of magnitude more than the one collected by BESIII

Motivation e^+e^-	colliders QED) Higher order	logs Outloo	ok
0000 0000	00	000000000	0000 00	

Estimated experimental precision

	Quan	°	Theory err	or	Exp. error	
	M_W	MeV]	4		15	
Now:	$\sin^2 \theta_{a}$	$[10^{-5}]$	4.5		16	
	Γ_Z [N	ĨeV]	0.5		2.3	
	$R_b[10]$	-5]	15		66	
Quantity	ILC	FCC-ee	CEPC	P	rojected the	eory error
M_W [MeV]	3–4	1	3		1	
$\sin^2\theta_{e\!f\!f}^l[10^{-5}]$	1	0.6	2.3		1.5	
Γ_Z [MeV]	0.8	0.1	0.5		0.2	
$\begin{bmatrix} R_b [10^{-5}] \end{bmatrix}$	14	6	17		5-10	

The estimated error for the theoretical predictions of these quantities is given, under the assumption that $O(\alpha \alpha_s^2)$, fermionic $O(\alpha^2 \alpha_s)$, fermionic $O(\alpha^3)$, and leading four-loop corrections entering through the ρ -parameter will become available.

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
0000		oo	00000000000	0000

To do list for QED

- Compute 2-loop QED radiative corrections to differential distributions of key processes: Bhabha scattering, muon decay, $e^+e^- \rightarrow \mu^+\mu^-$, $e^+e^- \rightarrow \pi^+\pi^-$, $e^+e^- \rightarrow ZH$ etc.
- Estimate higher-order contributions within some approximations
- Account for interplay with QCD and electroweak effects
- Construct a reliable Monte Carlo code(s)

0000 0000 O 00000000 0000	Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
	0000	0000	•0	00000000000	0000

Perturbative QED (I)

Fortunately, in our case the general perturbation theory can be applied:

$$\frac{lpha}{2\pi} \approx 1.2 \cdot 10^{-3}, \quad \left(\frac{lpha}{2\pi}\right)^2 \approx 1.4 \cdot 10^{-6}$$

Moreover, other effects: hadronic vacuum polarization, (electro)weak contributions, hadronic pair emission, etc. are small in, e.g., Bhabha scattering and can be treated one-by-one separately

Nevertheless, there are some enhancement factors:

1) First of all, the large logarithm $L \equiv \ln \frac{\Lambda^2}{m_c^2}$ where $\Lambda^2 \sim Q^2$ is the momentum transferred squared, e.g., $L(\Lambda = 1 \text{ GeV}) \approx 16$ and $L(\Lambda = M_Z) \approx 24$.

2) The energy region at the Z boson peak $(s \sim M_Z^2)$ requires a special treatment since factor M_Z/Γ_Z appears in the annihilation channel

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
0000	0000	o●	00000000000	0000

Perturbative QED (II)

Methods of resummation of higher-order QED corrections

- Resummation of vacuum polarization corrections (geometric series)
- Yennie–Frautschi–Suura (YFS) soft photon exponentiation and its extensions, see, e.g., PHOTOS
- Resummation of leading logarithms via QED structure functions or QED PDFs (E.Kuraev and V.Fadin 1985;
 A. De Rujula, R. Petronzio, A. Savoy-Navarro 1979)

N.B. Resummation of real photon radiation is good for sufficiently inclusive observables...

0000 0000 00 00 00000000 0000	Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
	0000	0000	00	●0000000000	0000

Leading and next-to-leading logs in QED

The QED leading (LO) logarithmic corrections

$$\sim \left(rac{lpha}{2\pi}
ight)^n \ln^n rac{s}{m_e^2}$$

were relevant for LEP measurements of Bhabha, $e^+e^-\to\mu^+\mu^-$ etc. for $n\leq 3$ since $\ln(M_Z^2/m_e^2)\approx 24$

NLO contributions

$$\sim \left(rac{lpha}{2\pi}
ight)^n \ln^{n-1} rac{s}{m_e^2}$$

with at least n = 3, 4 are required for future e^+e^- colliders

In the collinear approximation we can get them within the NLO QED structure function formalism

- F.A.Berends, W.L. van Neerven, G.J.Burgers, NPB'1988
- A.A., K.Melnikov, PRD'2002; A.A. JHEP'2003

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
0000	0000	00	0000000000	0000

•

QED NLO master formula

The NLO Bhabha cross section reads

 $+\mathcal{O}\left(\alpha^n L^{n-2}, \frac{m_e^2}{s}\right)$

$$d\sigma = \sum_{a,b,c,d=e,\bar{e},\gamma} \int_{\bar{z}_1}^1 dz_1 \int_{\bar{z}_2}^1 dz_2 \mathcal{D}_{ae}^{\text{str}}(z_1) \mathcal{D}_{b\bar{e}}^{\text{str}}(z_2) \times \left[d\sigma_{ab\to cd}^{(0)}(z_1, z_2) + d\bar{\sigma}_{ab\to cd}^{(1)}(z_1, z_2) \right] \times \int_{\bar{y}_1}^1 \frac{dy_1}{Y_1} \int_{\bar{y}_2}^1 \frac{dy_2}{Y_2} \mathcal{D}_{ec}^{\text{frg}}\left(\frac{y_1}{Y_1}\right) \mathcal{D}_{\bar{e}d}^{\text{frg}}\left(\frac{y_2}{Y_2}\right)$$

 $\alpha^2 L^2$ and $\alpha^2 L^1$ terms are completely reproduced [A.A., E.Scherbakova, JETP Lett. 2006; PLB 2008] || $\bar{e} \equiv e^+$

	QED	Higher order logs	Outlook
0000 0000	00	0000000000	0000

High-order ISR in e^+e^- annihilation

$$\frac{d\sigma_{e^+e^-\to\gamma^*}}{ds'} = \frac{1}{s}\sigma^{(0)}(s')\sum_{a,b=e^-,\gamma,e^+} D_{ae^-}\otimes\tilde{\sigma}_{ab\to\gamma^*}\otimes D_{be^+}$$

Contributions from $D_{e^-e^+}$ and $D_{e^+e^-}$ are missed in [J. Ablinger, J. Blümlein, A. De Freitas and K. Schönwald, "Subleading Logarithmic QED Initial State Corrections to $e^+e^- \rightarrow \gamma^*/Z^{0^*}$ to $O(\alpha^6 L^5)$," NPB 955 (2020) 115045]

Andrej Arbuzov

DGLAP in QED

2nd September 2024 1

13/26

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
0000	0000	00	0000000000	0000

QED NLO DGLAP evolution equations

$$\mathcal{D}_{ba}\left(x,\frac{\mu_R}{\mu_F}\right) = \delta_{ab}\delta(1-x) + \sum_{c=e,\gamma,\bar{e}} \int_{\mu_R^2}^{\mu_F^2} \frac{dt}{t} \int_x^1 \frac{dy}{y} P_{bc}(y,t) \mathcal{D}_{ca}\left(\frac{x}{y},\frac{\mu_R^2}{t}\right)$$

 μ_F is a factorization (energy) scale

 μ_R is a renormalization (energy) scale

 D_{ba} is a parton density function (PDF)

 P_{bc} is a splitting function or kernel of the DGLAP equation

N.B. In QED $\mu_R = m_e \approx 0$ is the natural choice

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
0000	0000	oo		0000

QED splitting functions

The perturbative splitting functions are

$$P_{ba}(x,\bar{\alpha}(t)) = \frac{\bar{\alpha}(t)}{2\pi} P_{ba}^{(0)}(x) + \left(\frac{\bar{\alpha}(t)}{2\pi}\right)^2 P_{ba}^{(1)}(x) + \mathcal{O}(\alpha^3)$$

e.g. $P_{ee}^{(0)}(x) = \left[\frac{1+x^2}{1-x}\right]_+$

They come from direct loop calculations, see, e.g., review "Partons in QCD" by G. Altarelli. For instance, $P_{ba}^{(1)}(x)$ comes from 2-loop calculations.

The splitting functions can be obtained by reduction of the ones known in QCD to the abelian case of QED.

 $\bar{\alpha}(t)$ is the QED running coupling constant in the $\overline{\text{MS}}$ scheme

Andrej	Λ	huror
Andrej	241	buzov

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
0000	0000	oo	00000●000000	0000

Running coupling constant

Compare **QED-like**

$$\bar{\alpha}(t) = \alpha \left\{ 1 + \frac{\alpha}{2\pi} \left(-\frac{10}{9} + \frac{2}{3}L \right) + \left(\frac{\alpha}{2\pi}\right)^2 \left(-\frac{13}{27}L + \frac{4}{9}L^2 + \dots \right) + \dots \right\}$$

and QCD-like

$$\bar{\alpha}(t) = \frac{4\pi}{\beta_0 \ln(t/\Lambda^2)} \left[1 - \frac{\beta_1}{\beta_0^2} \frac{\ln[\ln(t/\Lambda^2)]}{\ln(t/\Lambda^2)} + \dots \right]$$

Note that "-10/9" could have been hidden into Λ

In QED $\beta_0 = -4/3$ and $\beta_1 = -4$

Motivation	e^+e^- colliders 0000	QED	Higher order logs	Outlook
0000		oo	000000●00000	0000

$\mathcal{O}(\alpha)$ matching

The expansion of the master formula for ISR gives

$$d\sigma_{e\bar{e}\to\gamma^*}^{(1)} = \frac{\alpha}{2\pi} \left\{ 2LP^{(0)} \otimes d\sigma_{e\bar{e}\to\gamma^*}^{(0)} + 2d_{ee}^{(1)} \otimes d\sigma_{e\bar{e}\to\gamma^*}^{(0)} \right\} + d\,\bar{\sigma}_{e\bar{e}\to\gamma^*}^{(1)} + \mathcal{O}\left(\alpha^2\right)$$

We know the massive $d\sigma^{(1)}$ and massless $d\bar{\sigma}^{(1)}$ $(m_e \to 0 \text{ with } \overline{\text{MS}} \text{ subtraction})$ results in $\mathcal{O}(\alpha)$. E.g.

$$\frac{d\sigma_{e\bar{e}\to\gamma^*}^{(1)}}{d\sigma_{e\bar{e}\to\gamma^*}^{(0)}} = \frac{\alpha}{\pi} \left[\frac{1+z^2}{1-z}\right]_+ \left(\ln\frac{s}{m_e^2} - 1\right) + \delta(1-z)(\ldots), \quad z \equiv \frac{s'}{s}$$

Scheme dependence comes from here

Factorization scale dependence is also from here

N.B. "Massification procedure"

Andrej Arbuzov

DGLAP in QED

Motivation 0000	e^+e^- colliders 0000	QED oo	Higher order logs	Outlook 0000

Factorization scale choice

We apply the BLM-like prescription, i.e., hide the bulk of one-loop correction into the scale

For e^+e^- annihilation

$$\frac{d\sigma_{e\bar{e}\to\gamma^*}^{(1)}}{d\sigma_{e\bar{e}\to\gamma^*}^{(0)}} = \frac{\alpha}{\pi} \left[\frac{1+z^2}{1-z} \right]_+ \left(\ln \frac{s}{m_e^2} - 1 \right) + \delta(1-z)(\ldots) \Rightarrow \mu_F^2 = s \quad \text{or } \mu_F^2 = \frac{s}{e}$$

Remind Drell-Yan where we usually take $\mu_F^2 = s' \equiv zs$, i.e., the energy scale of the hard subprocess (?!)

For muon decay $\mu_F = m_{\mu}$ is good, but $\mu_F = m_{\mu}z(1-z)$ is better. It was cross-checked with the help of (partially) known two-loop results [K.Melnikov et al. JHEP'2007]

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
0000	0000	oo	00000000●000	0000

Iterative solution

Analytic expressions for NLO "e in e" and " γ in e" PDFs and fragmentation functions [A.A., U.Voznaya, JPG 2023]

$$\begin{split} \mathcal{D}_{ee}(x,\mu_F,m_e) &= \delta(1-x) + \frac{\alpha}{2\pi} LP_{ee}^{(0)}(x) + \frac{\alpha}{2\pi} d_{ee}^{(1)}(x,m_e,m_e) \\ &+ \left(\frac{\alpha}{2\pi}\right)^2 L^2 \left(\frac{1}{2} P_{ee}^{(0)} \otimes P_{ee}^{(0)}(x) + \frac{1}{2} P_{ee}^{(0)}(x) + \frac{1}{2} P_{e\gamma}^{(0)} \otimes P_{\gamma e}^{(0)}(x)\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^2 L \left(P_{e\gamma}^{(0)} \otimes d_{\gamma e}^{(1)}(x,m_e,m_e) + P_{ee}^{(0)} \otimes d_{ee}^{(1)}(x,m_e,m_e) - \frac{10}{9} P_{ee}^{(0)}(x) + P_{ee}^{(1)}(x)\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^3 L^3 \left(\frac{1}{6} P_{ee}^{(0)} \otimes P_{ee}^{(0)} \otimes P_{ee}^{(0)}(x) + \frac{1}{6} P_{e\gamma}^{(0)} \otimes P_{\gamma \gamma}^{(0)} \otimes P_{\gamma e}^{(0)}(x) + \ldots\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^3 L^2 \left(\frac{539}{27} + \frac{11}{3z} - 8\ln^3(1-z)\frac{1+z^2}{1-z} + \ldots\right) \\ &+ \mathcal{O}(\alpha^2 L^0, \alpha^3 L^1, \alpha^4 L^4) \end{split}$$

The large logarithm $L \equiv \ln \frac{\mu_F^2}{\mu_R^2}$ with factorization scale $\mu_F^2 \sim s$ or $\sim -t$; and renormalization scale $\mu_R = m_e$.

N.B. A mistake in $\mathcal{O}(\alpha^3 L^3)$ is corrected.

Motivation	e^+e^- colliders 0000	QED	Higher order logs	Outlook
0000		oo	00000000€00	0000

Higher-order effects in e^+e^- annihilation

[A.A., U.Voznaya, arXiv:2405.03443 (PRD'2024)]

Andrej Arbuzov

DGLAP in QED

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
0000	0000	oo	000000000€0	0000

ISR corrections to $e^+e^- \rightarrow Z(\gamma^*)$ $(\sqrt{s} = M_Z)$

LO $\mathcal{O}(\alpha^n L^n)$ and NLO $\mathcal{O}(\alpha^n L^{n-1})$ ISR corrections in % at the Z-peak and $z_{\min} = 0.1$

Type n	1	2	3	4	5
LO γ	-32.7365	4.8843	-0.3776	0.0034	0.0032
NLO γ	2.0017	-0.5952	0.0710	-0.0019	
LO pair		-0.3058	0.0875	0.0016	-0.0001
NLO pair		0.1585	-0.0460	0.0038	
Σ	-30.7348	4.1418	-0.2651	0.0069	0.0031

N.B. $\mathcal{O}(\alpha^2 L^0 \text{ ISR corrections are known [Berends; Blümlein]})$

Impact of new corrections on LEP results?!

PRELIMINARY NUMBERS

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
0000	0000	00	0000000000	0000

Higher-order effects in muon decay spectrum

Example for unpolarized case

$$d\Gamma^{\mathrm{NLO}}_{\mu \to e\nu\bar{\nu}} = d\Gamma^{(0)}_{\mu \to e\nu\bar{\nu}} \left\{ 1 + \sum_{k=1}^{\infty} \left(\frac{\alpha}{2\pi}\right)^k \sum_{l=k-1}^k \frac{\hat{F}_{kl}}{f_0} \hat{L}^l + \mathcal{O}(\alpha^k L^{k-2}) \right\}$$

[A.A., U.Voznaya, PRD'2024]

Andrej Arbuzov

Motivation	e^+e^- colliders 0000	QED	Higher order logs	Outlook	
0000		oo	00000000000	●000	
Applications					

- Applications
 - ISR in electron-positron annihilation $e^+e^- \rightarrow \gamma^*$, Z^* "Higher-order NLO initial state radiative corrections to $e^+e^$ annihilation revisited" [A.A., U.Voznaya, arXiv:2405.03443 (to appear in PRD)]
 - $\mathcal{O}(\alpha^3 L^2)$ corrections to muon decay spectrum: relevant for future experiments [A.A., U.Voznaya, PRD'2024]
 - Implementation into ZFITTER, production of benchmarks, tuned comparisons with KKMC which uses YFS exponentiation for ISR
 - Application to different e^+e^- annihilation channels and asymmetries within the SANC project
 - $\mathcal{O}(\alpha^3 L^2)$ corrections to muon-electron scattering for MUonE experiment (in progress)

Motivation 0000	e^+e^- colliders 0000	QED oo	Higher order logs 00000000000	Outlook 0●00

QED PDFs vs. QCD ones

Common properties:

- QED splitting functions = abelian part of QCD ones
- The same structure of DGLAP evolution equations
- The same Drell-Yan-like master formula with factorization
- Factorization scale and scheme dependence

Peculiar properties:

- QED PDFs are calculable
- QED PDFs are less inclusive
- QED renormalization scale $\mu_R = m_e$ is preferable
- QED PDFs can (do) lead to huge corrections
- Massification procedure

Motivation	e^+e^- colliders 0000	QED	Higher order logs	Outlook
0000		oo	00000000000	00●0

Outlook

- Parton picture is there also in QED
- QED PDF are similar to QCD ones, but with some differences
- QED cross-checks QCD
- Having high theoretical precision for the normalization processes $e^+e^- \rightarrow e^+e^-$, $e^+e^- \rightarrow \mu^+\mu^-$, and $e^+e^- \rightarrow 2\gamma$ is crucial for future e^+e^- colliders, especially for the Tera-Z mode
- We need complete two-loop QED results, but (sub)leading higher order corrections are also numerically important
- New Monte Carlo codes are required
- Semi-analytic codes are relevant for estimates and benchmarks

Motivation	e^+e^- colliders 0000	QED	Higher order logs	Outlook
0000		oo	00000000000	000●

ISR corrections to $e^+e^- \rightarrow Z(\gamma^*)$ ($\sqrt{s} = 350$ GeV)

LO $\mathcal{O}(\alpha^n L^n)$ and NLO $\mathcal{O}(\alpha^n L^{n-1})$ ISR corrections in % at $\sqrt{s} = 350$ GeV and $z_{\min} = 0.1$

Type n	1	2	3	4	5
LO γ	25.1041	0.6696	-0.0616	-0.0013	0.0001
NLO γ	-0.2861	0.1027	0.0318	-0.0003	
LO pair	—	1.4516	-0.0616	-0.0013	0.0001
NLO pair	—	0.1585	-0.0312	0.0003	
Σ	24.8180	2.3824	-0.1226	-0.0026	0.0002

PRELIMINARY NUMBERS