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MODELS WITH THE GAUSS�BONNET TERM

We consider models with the Gauss�Bonnet term, described by the
following action:

S =

∫
d4x

√
−g

[
U0R − 1

2
gµν∂µϕ∂νϕ− V (ϕ)− 1

2
ξ(ϕ)G

]
, (1)

where U0 =
M2

Pl

2 = 1
16πG ,

the functions V (ϕ) and ξ(ϕ) are di�erentiable ones,
R is the Ricci scalar and

G = RµνρσR
µνρσ − 4RµνR

µν + R2

is the Gauss�Bonnet term.

The perturbation theory for such types of models has been developed in
C. Cartier, J.c. Hwang, E.J. Copeland, Phys. Rev. D 64 (2001) 103504
J. c. Hwang and H. Noh, Phys. Rev. D 71 (2005) 063536
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STRING THEORY MOTIVATED GRAVITY

Einstein�Gauss�Bonnet gravity models are motivated by α′ corrections in
string theories. The most general Lagrangian density at the next to
leading order in the parameter α′ reads1:

Lstring = −λ
2
α′ξ(ϕ)

[
c1G + c2G

µν∂µϕ∂νϕ+ c3□ϕϕ
;µϕ;µ + c4(ϕ

;µϕ;µ)
2
]
,

• G is the Gauss�Bonnet term:

G = R2 − 4RµνR
µν + RµναβR

µναβ ,

• Gµν ≡ Rµν − 1
2g

µνR is the Einstein tensor,
• α′ = λ2s , where λs is the fundamental string length scale;
• ci are constants (we will consider the case ck = 0, k = 2, 3, 4);
• λ is an additional parameter allowing for di�erent species of string
theories, λ = −1/4 for the Bosonic string and λ = −1/8 for Heterotic
string respectively.

1D.J. Gross and J.H. Sloan, Nucl. Phys. B 291 (1987) 41;
R.R. Metsaev and A.A. Tseytlin, Nucl. Phys. B 293 (1987) 385.
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INFLATIONARY MODELS

In�ationary models with the Gauss�Bonnet term have been studied in
many papers:
Z.K. Guo and D.J. Schwarz, Phys. Rev. D 81, 123520 (2010)
A. De Felice, S. Tsujikawa, J. Elliston, R. Tavakol, JCAP 08 (2011) 021
M. De Laurentis, M. Paolella and S. Capozziello, Phys. Rev. D 91 (2015)
083531,
G. Hikmawan, J. Soda, A. Suroso, and F.P. Zen, Phys. Rev. D 93,
068301 (2016)
C. van de Bruck and C. Longden, Phys. Rev. D 93 (2016) 063519
S. Koh, B.H. Lee and G. Tumurtushaa, Phys. Rev. D 95 (2017) 123509,
K. Nozari and N. Rashidi, Phys. Rev. D 95 (2017) 123518
S.D. Odintsov and V.K. Oikonomou, Phys. Rev. D 98 (2018) 044039
Z. Yi and Y. Gong, Universe 5 (2019) 200
E.O. Pozdeeva, Eur. Phys. J. C 80 (2020) 612
E.O. Pozdeeva, S.Yu. Vernov, Eur. Phys. J. C 81 (2021) 633
R. Kawaguchi and S. Tsujikawa, Phys. Rev. D 107 (2023) 063508
S.D. Odintsov, V.K. Oikonomou, F.P. Fronimos, Phys. Rev. D 107

(2023) 08
Yogesh, I.A. Bhat and M.R. Gangopadhyay, [arXiv:2408.01670].
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EVOLUTION EQUATIONS IN THE FLRW

METRIC

In the spatially �at Friedmann�Lema�itre�Robertson�Walker metric
with

ds2 = − dt2 + a2(t)(dx2 + dy2 + dz2),

we obtain the following system of evolution equations

12H2 (U0 − 2ξ,ϕψH) = ψ2 + 2V , (2)

4Ḣ (U0 − 2ξ,ϕψH) = 4H2
(
ξ,ϕϕψ

2 + ξ,ϕψ̇ − Hξ,ϕψ
)
− ψ2, (3)

ψ̇ + 3Hψ = − V,ϕ − 12H2ξ,ϕ

(
Ḣ + H2

)
, (4)

where H = ȧ/a is the Hubble parameter, a(t) is the scale factor,
ψ = ϕ̇, dots denote the derivatives with respect to the cosmic time t, and
A,ϕ ≡ dA

dϕ for any function A(ϕ).
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DYNAMICAL SYSTEM

As usually for in�ationary model construction, the e-folding number
N = ln(a/ae), where ae is a constant, is considered as a measure of time
during in�ation.
Using the relation d

dt = H d
dN and introducing χ = ψ

H , one get the
following system:

dϕ

dN
=χ,

dχ

dN
=

1

H2 (B − 2ξ,ϕH2χ)

{
3
[
3− 4ξ,ϕϕH

2
]
ξ,ϕH

4χ2

+ [3B + 2ξ,ϕV,ϕ − 6U0]H
2χ− V 2

U0
X

}
− χ

2H2

dH2

dN
,

dH2

dN
=

H2

2 (B − 2ξ,ϕH2χ)

[(
4ξ,ϕϕH

2 − 1
)
χ2 − 16ξ,ϕH

2χ− 4
V 2

U2
0

ξ,ϕX

]
,

(5)

where B = 12ξ2,ϕH
4 + U0 and X =

U2
0

V 2

(
12ξ,ϕH

4 + V,ϕ
)
.
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SLOW-ROLL PARAMETERS

Following
Z. K. Guo and D. J. Schwarz, Phys. Rev. D 81 (2010), 123520
[arXiv:1001.1897],
C. van de Bruck and C. Longden, Phys. Rev. D 93 (2016) no.6, 063519
arXiv:1512.04768],
E. O. Pozdeeva, M. R. Gangopadhyay, M. Sami, A. V. Toporensky and
S. Y. Vernov, Phys. Rev. D 102 (2020) no.4, 043525 [arXiv:2006.08027],
S. D. Odintsov and T. Paul, Phys. Dark Univ. 42 (2023), 101263
[arXiv:2305.19110],
we consider the slow-roll parameters:

ε1 = − Ḣ

H2
= − d ln(H)

dN
, εi+1 =

d ln |εi |
dN

, i ⩾ 1, (6)

δ1 =
2

U0
ξ,ϕHψ =

2

U0
ξ,ϕH

2χ, δi+1 =
d ln |δi |
dN

, i ⩾ 1. (7)
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INFLATIONARY PARAMETERS

The spectral index ns and the tensor-to-scalar ratio r are connected with
the slow-roll parameters as follows2,

ns = 1−2ε1−
2ε1ε2 − δ1δ2
2ε1 − δ1

= 1−2ε1−
d ln(r)

dN
= 1+

d

dN
ln

(
H2

U0r

)
, (8)

r = 8|2ε1 − δ1|. (9)

The scalar perturbations amplitude

As =
H2

π2U0 r
. (10)

The in�ationary parameters are constrained by the combined analysis of
Planck, BICEP/Keck and other observations as follows3:

As = (2.10± 0.03)× 10−9, ns = 0.9654± 0.0040 , r < 0.028 .

2Z.K. Guo and D.J. Schwarz, Phys. Rev. D 81 (2010), 123520 [arXiv:1001.1897]
3G. Galloni, N. Bartolo, S. Matarrese, M. Migliaccio, A. Ricciardone and N.

Vittorio, JCAP 04 (2023) 062 [arXiv:2208.00188].
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Using system (5), we obtain the parameter ε1(N) in the following form:

ε1 = − 1

2H2

dH2

dN
=

3

ψ2 + 2V

[
ψ2 − 4H2

(
ξ,ϕϕψ

2 + ξ,ϕψ̇ − Hξ,ϕψ
)]
(11)

Using de�nitions of the slow-roll parameters, we get

V = U0H
2 [6− 2ε1 − 5δ1 − δ1 (δ2 − ε1)] . (12)

and
χ2 = 2U0 [2ε1 − δ1 + δ1 (δ2 − ε1)] . (13)

It is useful, to rewrite evolution equations in terms of the slow-roll
parameters. Equations (2) and (3) are equivalent to

12U0H
2 (1− δ1) = ψ2 + 2V =

U2
0δ

2
1

4ξ2,ϕH
2
+ 2V , (14)

4U0Ḣ (1− δ1) = − ψ2 + 2U0H
2δ1 (δ2 + ε1 − 1) .
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THE STANDARD SLOW-ROLL

APPROXIMATION

The standard approximate equations have been proposed in
Z.K. Guo, D.J. Schwarz, Phys. Rev. D 81 (2010), 123520
[arXiv:1001.1897]
and described via the e�ective potential in
E.O. Pozdeeva, M.R. Gangopadhyay, M. Sami, A.V. Toporensky,
S.Yu. Vernov, Phys. Rev. D 102 (2020) 043525 [arXiv:2006.08027].
This way assumes that all in�ationary parameters are negligibly small and
can be removed from equations. In this slow-roll approximation, the
leading order equations have the following form:

H2 ≃ V

6U0
, (15)

Ḣ ≃ − ϕ̇2

4U0
− ξ,ϕH

3ϕ̇

U0
, (16)

ϕ̇ ≃ − V,ϕ + 12ξ,ϕH
4

3H
. (17)
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THE EFFECTIVE POTENTIAL

To analyze the stability of de Sitter solutions in model (1) the e�ective
potential has been proposed4:

Veff (ϕ) = − U2
0

V (ϕ)
+

1

3
ξ(ϕ). (18)

Using slow-roll approximation and the e�ective potential, we get the
following useful expressions:

dH

dN
≃ − H

U0
V,ϕVeff ,ϕ , χ =

dϕ

dN
≃ − 2

V

U0
Veff ,ϕ,

dN

dϕ
≃ − U0

2VVeff ,ϕ

.

In terms of the e�ective potential, the slow-roll parameters are as follows:

ε1 =
V,ϕ
U0

Veff ,ϕ , ε2 = − 2V

U0
Veff ,ϕ

d

dϕ
ln
(
V,ϕVeff ,ϕ

)
,

δ1 = − 2V 2

3U3
0

ξ,ϕVeff ,ϕ , δ2 = − 2V

U0
Veff ,ϕ

d

dϕ
ln
(
V 2ξ,ϕVeff ,ϕ

)
.

4E.O. Pozdeeva, M. Sami, A.V. Toporensky and S.Yu. Vernov, Phys. Rev. D 100

(2019) 083527 [arXiv:1905.05085].
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So, |ϵ1| ≪ 1 and |δ1| ≪ 1 if the function Veff ,ϕ is su�ciently small. It
allows us to use the e�ective potential for construction of in�ationary
scenarios.
In�ationary parameters are:

the tensor-to-scalar ratio r

r = 16
V 2

U3
0

(
Veff ,ϕ

)2
. (19)

the scalar perturbations amplitude As

As ≈
V

6π2U2
0 r

=
U0

96π2V
(
Veff ,ϕ

)2 . (20)

the spectral index ns

ns = 1 +
2

U0

(
2VVeff ,ϕϕ + V,ϕVeff ,ϕ

)
= 1 +

d

dN
ln (As) . (21)
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PROBLEMS OF THE STANDARD SLOW-ROLL

APPROXIMATION

It has been shown by numerical calculations in
C. van de Bruck and C. Longden, Phys. Rev. D 93 (2016) no.6, 063519
[arXiv:1512.04768]
that the model with a fourth degree monomial potential V = V0ϕ

4 and
ξ = ξ0/V , where V0 and ξ0 are some positive constants, has no exit from
in�ation, whereas the standard slow-roll approximation shows that this
exit does exist, so the approximation proposed in
Z.K. Guo and D.J. Schwarz, Phys. Rev. D 81 (2010), 123520
[arXiv:1001.1897]
is not accurate at the end of in�ation.

It is important to improve the slow-roll approximation and compare
approximate results with results of numerical calculations without any
approximation.

We propose two new slow-roll approximations.
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QUADRATIC EQUATION IN H2

Multiplying (14) to H2 and substituting ψ in terms of the slow-roll
parameter δ1, we obtain:

12U0 (1− δ1)H
4 − 2VH2 − δ21U

2
0

4 ξ2,ϕ
= 0 .

We consider the positive H2 at δ1 < 1:

H2 =
V

12U0 (1− δ1)
+

√
V 2ξ2,ϕ + 3U3

0δ
2
1 (1− δ1)

12U0 (1− δ1) |ξ,ϕ|
. (22)
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NEW APPROXIMATION I

We expand the obtained expression (22) to series with respect to the
slow-roll parameter δ1 ≪ 1:

H2 ≈ V

6U0
+

V

6U0
δ1 +O(δ21) . (23)

For Ḣ, we get

Ḣ ≃ − H2δ1
2

− U0δ
2
1

16ξ2,ϕH
2
− H2δ21

2
. (24)

We neglect terms proportional to ϕ̈ and ϕ̇2 in the �eld equation and get
the following approximate equation:

3U0δ1
2ξ,ϕ

= − V,ϕ − 12H2ξ,ϕ

(
Ḣ + H2

)
. (25)
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Substituting H2 and Ḣ into here and neglecting terms, proportional to
δn1 , where n ⩾ 2, we get

δ1(ϕ) = −
2V 2ξ,ϕ Veff ,ϕ

V 2ξ2,ϕ + 3U3
0

.

The knowledge of δ1(ϕ) allows us to obtain H(ϕ) and χ(ϕ).

H2 ≃ V

6U0

[
1−

2V 2ξ,ϕVeff ,ϕ

V 2ξ2,ϕ + 3U3
0

]
=

V
(
9U3

0 − 6U2
0ξ,ϕ V,ϕ + ξ2,ϕV

2
)

18U0

(
3U3

0 + ξ2,ϕV
2
) .

(26)

χ =
dϕ

dN
=

U0δ1
2ξ,ϕH2

≃ −
6U2

0VVeff ,ϕ

V 2ξ2,ϕ + 3U3
0 − 2V 2ξ,ϕVeff ,ϕ

. (27)

We get the slow-roll parameters as functions of ϕ:

ε1(ϕ) = −1

2

dϕ

dN

d ln(H2)

dϕ
, ε2(ϕ) =

U0δ1
2ξ,ϕH2ε1

ε1,ϕ , δ2 =
U0

2H2ξ,ϕ
δ1,ϕ.
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NEW APPROXIMATION II

The second way to get δ1(ϕ) is the following.
We neglect the term proportional to δ21 and get a nonzero solution:

H2 =
V

6U0(1− δ1)
. (28)

Considering the di�erential of H2 and using the de�nition of the
slow-roll parameters, we get

dH2

dN
=

V,ϕ δ1
12ξ,ϕH2(1− δ1)

+
V δ1δ2

6U0(1− δ1)2
=

U0 V,ϕ δ1
2ξ,ϕV

+
V δ1δ2

6U0(1− δ1)2
.

and

ε1 = − 3U2
0 V,ϕ

2V 2ξ,ϕ
δ1(1− δ1)−

δ1δ2
2 (1− δ1)

. (29)

From de�nition of slow-roll parameters, we get

ψ̇ ≈ U0δ1
2ξϕ

(
δ2 + ε1 −

3U2
0ξ,ϕϕδ1
V ξ2,ϕ

)
. (30)
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Substituting H2, ϵ1, ψ̇ into the �eld equation, multiplying it to (1− δ1)
2,

and supposing that any products of the slow-roll parameters are
negligible, we get

δ1(ϕ) = −
2ξ,ϕ

(
3U2

0V,ϕ + V 2ξ,ϕ
)

9U2
0 (U0 − ξ,ϕV,ϕ)

. (31)

Now we can express H2, χ, N,ϕ , and ϵ1 via ϕ:

H2(ϕ) ≃ 3U0V (U0 − ξ,ϕV,ϕ)

2(9U3
0 − 3U2

0ξ,ϕV,ϕ + 2ξ2,ϕV
2)
, (32)

χ =
U0δ1
2ξ,ϕH2

≃ −
2(3U2

0V,ϕ + ξ,ϕV
2)(9U3

0 − 3U2
0ξ,ϕV,ϕ + 2ξ2,ϕV

2)

27U2
0V (U0 − ξ,ϕV,ϕ)

2 ,

(33)

dN

dϕ
= χ−1, ε1(ϕ) = − χ

2

d ln(H2)

dϕ
, (34)
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MODELS WITH MONOMIAL POTENTIALS

We propose models with the potential V = V0ϕ
n, where n = 2 or n = 4

and

ξ =
CU2

0

V + Λ
, (35)

where C and Λ are positive constants. Such a modi�cation is natural in
general, removing a singular behavior at ϕ = 0 and gives us an exit from
in�ation when ϕ becomes small enough.
The initial value of the scalar �eld ϕ is positive and it tends to zero
during in�ation.
Calculating the derivative of the e�ective potential (18),

Veff ,ϕ =
U2
0n
(
V 2
0 (3− C )ϕ2 n + 6ΛV0ϕ

n + 3Λ2
)

3V0ϕn+1 (V0 ϕn + Λ)2
, (36)

we �nd that Veff ,ϕ > 0 for any ϕ > 0 at C < 3.
It is a su�cient condition that a de Sitter solution does not exist at any
ϕ > 0.
This condition allows us to get an in�ationary model without any
�ne-tuning of the initial data.
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QUADRATIC POTENTIAL

For the model with the potential V = V0 ϕ
2 and the following values of

parameters:

U0 =
M2

Pl

2
, C = 2.754, V0 = 4.05×10−11M2

Pl, Λ = 1.0125×10−12M4
Pl ,

numerical integration gives the following values of the in�ationary
parameters:

As = 2.0968× 10−9 , ns = 0.9654, r = 0.0102.

The in�ationary parameters are calculated at ϕ0 = 2.7565 that
corresponds to N = 0. The in�ation �nishes at Nend = 65, that
corresponds to ϕend = 0.0286. The constructed in�ationary scenario does
not contradict to the observation data5

5Y. Akrami et al. [Planck], Astron. Astrophys. 641 (2020), A10 [arXiv:1807.06211].
P.A.R. Ade et al. [BICEP and Keck], Phys. Rev. Lett. 127 (2021) 151301
[arXiv:2110.00483].
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Ðèñ.: 1. The in�ationary model with V (ϕ) = V0ϕ
2. Values of the function

ϕ(N) in units of MPl. The black line is the result of the numerical integration.
The blue curve is obtained in the standard approximation, red � in the
approximation I , green � in the approximation II by. The initial values
ϕ(0) = ϕ0 are given in Table 1.
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Ðèñ.: 2. The slow-roll parameters ε1(ϕ) (left panel) and δ1(ϕ) (right panel) for
the model with V (ϕ) = V0ϕ

2. The black line is the result of the numerical
integration, blue curves are obtained in the standard approximation, red curves
in the approximation I, and green curves in the approximation II. The stars
denote the end of the in�ation (when ε1 = 1). Values of ϕ are given in units of
MPl.
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for the model with V (ϕ) = V0ϕ

2 in the standard approximation. Values of ϕ
are given in units of MPl.
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Òàáëèöà: 1. Numerical and approximate values of parameters, characterizing

the in�ationary dynamic in the model with the quadratic potential.

Parameter Numeric Standard Approx I Approx II

result Approx

ϕ0/MPl 2.7565 4.8472 2.9757 2.7082
109As(ϕ0) 2.097 6.696 2.491 1.985
ns(ϕ0) 0.965 0.971 0.967 0.965
r(ϕ0) 0.0102 0.0096 0.0099 0.0104

ϕend/MPl 0.0286 0.6184 0.0906 0.1097
δ1(ϕend) 0.950 1.62 7.82 0.590
N(ϕend) 65.0 65.0 65.0 65.0
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Òàáëèöà: 2. Values of the in�ationary parameters for the model with the

quadratic potential in di�erent approximations.

Parameter Standard Approx I Approx II

Approx

ϕin/MPl 3.6589 2.7912 2.7676
109As(ϕin) 2.10 2.10 2.10
ns(ϕin) 0.947 0.965 0.966
r(ϕin) 0.0174 0.0104 0.0102

N(ϕend)− N(ϕin) 35.1 60.0 66.6
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FOURTH-ORDER POTENTIAL

The situation is similar for the model with the fourth-order potential
V = V0ϕ

4. For parameters

V0 = 3.4× 10−11, C = 2.856, Λ = 5.95× 10−13M4
Pl .

numeric calculations show that the in�ation scenario does not contradict
the current observation data. We �x the number of e-folding to be equal
N = 60.6 and get unappropriated results for the standard approximations.
New approximations, as in the previous example, work essentially better
(see Table 3).
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Òàáëèöà: 3. Numerical and approximate values of parameters, characterizing

the in�ationary dynamic in the model with the quartic potential.

Parameter Numeric Standard Approx I Approx II

result Approx

ϕ0/MPl 1.4019 4.9705 1.4898 1.3974
109As(ϕ0) 2.096 117.2 2.599 2.017
ns(ϕ0) 0.965 0.953 0.965 0.965
r(ϕ0) 0.0044 0.0120 0.0045 0.0045

ϕend/MPl 0.2000 0.8899 0.3048 0.3037
δ1(ϕend) 0.885 1.80 4.23 0.577
N(ϕend) 60.6 60.6 60.6 60.6
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Òàáëèöà: 4. Values of the in�ationary parameters for the model with the

quartic potential in di�erent approximations.

Parameter Standard Approx I Approx II

Approx

ϕin/MPl 2.5555 1.4104 1.4116
109As(ϕin) 2.10 2.10 2.10
ns(ϕin) 0.817 0.964 0.965
r(ϕin) 0.0466 0.0045 0.0045

N(ϕend)− N(ϕin) 13.5 54.6 61.8
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Ðèñ.: 4. The in�ationary model with V (ϕ) = V0ϕ
4. Values of the function

ϕ(N) in units of MPl. The black line is the result of the numerical integration.
The blue curve is obtained in the standard approximation, red � in the
approximation I , green � in the approximation II. The initial values ϕ(0) = ϕ0

are given in Table 3.
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Ðèñ.: 5. The slow-roll parameters ε1(ϕ) (left panel) and δ1(ϕ) (right panel) for
the model with V (ϕ) = V0ϕ

4. The black line is the result of the numerical
integration, blue curves are obtained in the standard approximation, red curves
� in the approximation I, and green curves � in the approximation II. The
stars denote the end of the in�ation (when ε1 = 1). Values of ϕ are given in
units of MPl.
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CONCLUSIONS

We propose new slow-roll approximations for in�ationary models
with the Gauss�Bonnet term. We �nd more accurate expressions of
the standard slow-roll parameters as functions of the scalar �eld.
The construction of a higher accuracy slow-roll approximation is
based on the use of not the function H(ϕ), but the function
H(ϕ, δ1). To get H(ϕ) we need to obtain δ1(ϕ).
To check the accuracy of approximations considered we construct
in�ationary models with quadratic and quartic monomial potentials

and the V = V0ϕ
n and the function ξ =

CU2
0

V+Λ . Numerical analysis of
these models indicates that the proposed in�ationary scenarios do
not contradict to the observation data.
The obtained numerical solutions have been compared with slow-roll
approximations. As for the standard approximation, we show that it
is not accurate enough to get correct values of in�ationary
parameters and correct number of e-folding during in�ation. On the
contrary, the proposed approximations give the results close enough
to the numerical solutions. Observational parameters calculated
using these approximations are still within the allowed regions.

Thank for your attention
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