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General Relativity and Quantum Theory

General Relativity (GR) is a complete theory of classical
gravitational phenomena. It proved valid in the wide range o f
energies and distances.

There are covariant equations for the matter (fields and part icles,
fluids etc) and Einstein equations for the gravitational fiel d gµν

Rµν − 1
2

Rgµν = 8πG Tµν .

The most important solutions of GR have specific symmetries.

1) Spherically-symmetric solution: Planets, Stars, Black holes.
2) Isotropic and homogeneous metric: Universe.

And in both cases there are unavoidable singularities (Penr ose
and Hawking theorems).
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Applicability of GR

• Singularities are significant, because they emerge in the
most important solutions, in the main areas of application o f GR.

In cosmology, extrapolating backward in time, we find that th e
use of GR leads to a problem, while at the late Universe GR
provides a consistent basis for cosmology and astrophysics .

The solution of the problem of singularities is to assume tha t

• GR is not valid at all scales .

At the very short distances and/or when the curvature become s
very large, the gravitational phenomena must be described b y
some other theory, more general than GR.

But, due to the success of GR, we expect that this unknown
theory coincides with GR at the large distance & weak field lim it.

• The deviations from GR may be owing to quantum effects.
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Dimensional arguments.

The expected scale of the quantum gravity effects is associa ted
to the Planck units of length, time and mass. The idea of Planck
units is based on the existence of the 3 fundamental constant s:

c = 3 · 1010 cm/s ,

~ = 1.054 · 10−27 erg · sec ;

G = 6.67 · 10−8 cm3/sec2 g .

One can use them uniquely to construct the dimensions of

length lP = G1/2
~

1/2 c−3/2 ≈ 1.4 · 10−33 cm;

time tP = G1/2
~

1/2 c−5/2 ≈ 0.7 · 10−43 sec;

mass MP = G−1/2
~

1/2 c1/2 ≈ 0.2 · 10−5g ≈ 1019 GeV .
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Three choices for Quantum Gravity (QG)

The existence of fundamental Planck units ( MP ∼ 1019 GeV )
indicates new fundamental physics at this very high energy
scale. How to interpret this result of dimensional analysis?

General classification of possible approaches two Quantum
Gravity (QG). Three distinct groups:

• Quantize both gravity and matter fields. This is, definitely,
the most fundamental possible approach.

• Quantize only matter fields on classical curved background
(semiclassical approach).

• Quantize “something else.” E.g., in case of (super)string
theory both matter and gravity are induced.

Which approach is “better”?
Indeed, they have something important in common.
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• QFT and Curved space-time are well-established notions,
which passed many experimental/observational tests.

Therefore, our first step should be to consider QFT of matter
fields on classical curved background.

Different from quantum theory of gravity, QFT of matter field s in
curved space is renormalizable and free of conceptual probl ems.

Moreover, understanding renormalization of semiclassica l
theory can be very helpful in order to impose some constrains
on a complete QG.

Semiclassical approach: metric enters the generating functional
of the Green functions as external parameters,

Z (J , gµν) =

∫

dΦ exp
{

iS(Φ, gµν) + iΦJ
}

.

Effective Action depends on the mean field and metric, Γ(Φ, gµν).
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The renormalizable QFT in curved space requires introducin g a
generalized form of the gravity (external field), “vacuum ac tion”.

Svac = SEH + SHD

where SEH = − 1
16πG

∫

d4x
√−g {R + 2Λ } .

is the Einstein-Hilbert action with the cosmological const ant.

SHD includes higher derivative terms. The most useful form is

SHD =

∫

d4x
√−g

{

a1C2 + a2E + a3�R + a4R2} ,

where C2(4) = R2
µναβ − 2R2

αβ +
1
3

R2

is the square of the Weyl tensor and

E = RµναβRµναβ − 4 RαβRαβ + R2

is the integrand of the Gauss-Bonnet topological term.
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Quantum gravity (QG): covariant renormalization

As the first example consider quantum GR.

SEH = − 1
16πG

∫

d4x
√−g (R + 2Λ) .

Power counting: D + d = 2 + 2p .

At the 1-loop level we can expect the divergences like

O(R2
...) = R2

µναβ , R2
µν , R2 .

’t Hooft and Veltman; Deser and van Nieuwenhuisen, (1974); ...

At the 2-loop level we have

O(R3
...) = Rµν�Rµν , ...R3 , RµνRµ

αRαν , RµναβRµν
ρσRµνρσ .

M.H. Goroff and A. Sagnotti, NPB 266 (1986).

Since the last structure does not vanish on-shell, the theor y is
non-renormalizable.

Ilya Shapiro, Confinement of ghosts and stability in higher d erivative quantum gravity



Within the standard perturbative approach non-renormaliz ability
means the theory has no predictive power.

Every time we introduce a new type of a counterterm, it is
necessary to fix renormalization condition and this means a
measurement. So, before making a single predictions, it is
necessary to have an infinite amount of experimental data.

What are the possible solutions?

• Change standard perturbative approach to something else.
There are many options, but their consistency or their relat ion
to the QG program are not clear, in all cases.

• Change the theory, i.e., take another theory to construct QG .

The first option is widely explores in the asymptotic safety
scenarios, in the effective approaches to QG, induced gravi ty
approach (including string theory) and so on.

Let us concentrate on the second idea.
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The most natural choice is four derivative model, because we
need four derivatives anyway for the quantum matter fields.

Already known action: Sgravity = SEH + SHD

where SHD includes square of the Weyl tensor and R

SHD = −
∫

d4x
√−g

{

1
2λ

C2 +
ω

3λ
R2 + surface terms

}

,

C2(4) = R2
µναβ − 2R2

αβ + R2/3 ,

Propagators of metric and ghosts behave like O(k−4) and we
have K4, K2, K0 vertices.

The superficial degree of divergence

D + d = 4 − 2K2 − 4K0.

This theory is definitely renormalizable. Dimensions of
counterterms are 4, 2, 0.

K. Stelle, Phys. Rev. D (1977).
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Well, there is a price to pay: massive ghosts

Gspin−2(k) ∼ 1
m2

(

1
k2 − 1

k2 + m2

)

, m ∝ MP .

The tree-level spectrum includes massless graviton and mas sive
spin- 2 “ghost” with negative kinetic energy and a huge mass.

Particle with negative energy means instability of vacuum s tate.

The Minkowski space is not protected from the spontaneous
creation of massive ghost and many gravitons from vacuum.

Different sides of the HDQG problems with massive ghosts:

• In classical systems higher derivatives generate explodin g
instabilities at the non-linear level (M.V. Ostrogradsky, 1850).

• Interaction between ghost and gravitons may violate energy
conservation in the massless sector (M.J.G. Veltman, 1963).

• Ghost produce violation of unitarity of the S -matrix.
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One can include more than four derivatives,

S = SEH

+

N
∑

n=0

∫

d4x
√−g

{

ωC
n Cµναβ�

nCµναβ + ωR
n R�

nR
}

+O
(

R3
...

)

.

Simple analysis shows that in this theory massive ghost-lik e
states are still present.

For the real poles case:

G2(k) =
A0

k2 +
A1

k2 + m2
1

+
A2

k2 + m2
2

+ · · ·+ AN+1

k2 + m2
N+1

.

For any sequence 0 < m2
1 < m2

2 < m2
3 < · · · < m2

N+1, the signs of
the corresponding terms alternate, Aj · Aj+1 < 0.

M. Asorey, J.-L. Lopez & I. Sh., IJMPhA (1997), hep-th/9610006.
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S = SEH +

∫

d4x
√−g

{

ωC
N Cµναβ�

NCµναβ + ωR
N R�

NR + · · ·
}

.

Again, let us consider only vertices with a maximal Kν = 2k + 4.

Then we have rl = Kν = 2k + 4 and, combining

D + d =
∑

lint

(4 − rl) − 4n + 4 +
∑

ν

Kν

with lint = p + n − 1 ,

we can easily arrive at the estimate of d for D = 0

d = 4 + k(1 − p) .

For k = 0 we meet the standard HDQG result, d ≡ 4. Starting
from k = 1 we have superrenormalizable theory, where the
divergences exist only for p = 1, 2, 3.

For k ≥ 3 we have superrenormalizable theory, where
divergences exist only for p = 1, that is at the one-loop level.
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Renormalization group in fourth-derivative QG

In the seminal paper by Fradkin and Tseytlin were done severa l
outstanding theoretical discoveries about quantum gravit y:

E.S. Fradkin and A.A. Tseytlin, Nucl. Phys. B201 (1982) 469.

• Systematic analysis of gauge dependence of the
renormalization group running in QG. In quantum GR, there is
unique on-shell renormalization group equation for the
dimensionless combination γ = 16πGΛ:

µ
dγ
µ

= −29
5

γ2

(4π)2 .

• Heat-kernel formalism for fourth derivative operators.• Conceptually consistent derivation of one-loop beta
functions in fourth-derivative gravity.• Clear distinction between conformal and non-conformal QG’ s.• Discussion of effective approach in higher derivative QG.• AF in QG and separation of essential charges.
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Exact β-functions in QG

In the superrenormalizable QG one can derive exact and
universal RG equations by working at the one-loop level !

M. Asorey, J.-L. Lopez & I. Sh., IJMPhA (1997), hep-th/9610006.

βΛ = µ
dρΛ
dµ

=
1

(4π)2

(

5ωN−2,C

ωN,C
+
ωN−2,R

ωN,R
−

5ω2
N−1,C

2ω2
N,C

−
ω2

N−1,R

2ω2
N,R

)

.

L. Modesto, L. Rachwal & I.Sh., arXiv:1704.03988; 2104.13980

βG = µ
d

dµ

(

− 1
16πG

)

= − 1
6(4π)2

(

5ωN−1,C

ωN,C
+
ωN−1,R

ωN,R

)

.

Different from four-derivative quantum gravity these β-functions
do not depend on the choice of gauge-fixing conditions.

For N ≥ 3 they are exact.
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Two sides of higher derivatives in QG.

A consistent theory working at arbitrary energy scale canno t
be constructed without at least fourth derivatives.

If the higher derivative terms are included, then the tree-l evel
spectrum includes massless graviton and massive spin-2
“ghost” with negative kinetic energy and huge mass.

If we do not include the higher derivative terms into classic al
action, they will emerge with infinite coefficients and (most
relevant) with logarithmically running parameters. In any case,
the unphysical ghosts come back.

No way to live with ghosts and no way to live without ghosts.

Since we live, there should be an explanation of this.
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Standard (for some people, at least) logic

The idea is to consider all higher derivative terms to be smal l
perturbations by definition.

J.Z. Simon, Phys. Rev. D41 (1990);
L. Parker and J.Z. Simon, Phys. Rev. D47 (1993), gr-qc/9211002.

In this approach all higher derivative terms, including the
renormalized terms in the classical action, quantum correc tions,
running parameter etc, are regarded as small perturbations over
the much greater Einstein-Hilbert term.

Certainly, this approach is a kind of ad hoc one and it can work
only for energies much below MP scale, that is not what we
expect from the “theory of everything”, such as QG.

Also, there is a lot of ambiguity.

Should we treat R2 as perturbation? Why? And even if so,
what we have to do with the Starobinsky model? Forbid it?
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What to do with R3, RRµνRµν and other terms like these?

Should we treat all such terms as perturbations? Why?
Because they have higher derivatives? Even regardless
of the fact they do not produce ghosts?

What is the rule of splitting the action into main part and
perturbation?

Moreover, if the procedure is considered as part of effective
approach to QFT, this means we assume that QG phenomena
are relevant only far below the Planck scale.

This is something opposite to what we expect from quantum
gravity, after all. The original motivation for quantum gra vity is
to deal with the Planck energies.
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Ghost-free HD models of gravity

Suggested as an alternative to Zweibach transformation in s tring
theory: In the non-local theory

S = − 1
2κ

∫

d4x
√−g

{

R + Gµν
a(�)− 1

�
Rµν

}

, a(�) = e−�/m2
.

A. Tseytlin, PLB, hep-th/9509050.

In this and similar theories propagator of metric perturbat ions
has a single massless pole, corresponding to gravitons.

With this choice there are no ghosts!

The idea is to use Zweibach-like transformation, but arrive at
the non-local theory which is non-polynomial in derivative s,
instead of “killing” all higher derivatives that one can kil l.

Can it be a basis for a QG theory?
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There was a proposal to use the same kind of non-local models
to construct superrenormalizable and unitary models of QG.

N.V. Krasnikov, T.M.Ph. 73 (1987) 1184.

E.T. Tomboulis, hep-th/9702146; arXiv:1507.00981 – PRD. . . .

L. Modesto, L. Rachwal, NPB (2014), arXiv:1407.8036.

The propagator is defined by the terms bilinear in curvature’ s,

S =

∫

x

{

− 1
κ2 R +

1
2

Cµναβ Φ(�)Cµναβ +
1
2

R Ψ(�)R
}

.

The equation for defining the poles:

p2
[

1 + κ2p2Φ(−p2)
]

= p2 eαp2
= 0.

In this particular case there is only a massless pole
corresponding to gravitons. But unfortunately, it is impossible
to preserve the ghost-free structure at the quantum level.
I.Sh., Counting ghosts ... in the “ghost-free” .. 1502.00106, PLB.

Typically there are infinitely many poles on the complex plan e.
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No way to live without ghosts!

One can conclude that in all three approaches to QG, namely
semiclassical, legitimate QG, induced gravity/strings , there
is no reasonable way to get rid of massive ghost-like states.

What we can really do is to make all the ghosts complex,
in the sense of complex “massive” poles in the propagator.

The complex poles always come in complex conjugate pair,
which opens interesting possibilities, related to Lee-Wic k
quantization.

This is coherent with the previous attempts to solve the prob lem
of higher derivative massive ghosts.

E. Tomboulis (1977,1980,1984), A. Salam and J. Strathdee (1978),
I. Antonidis & E. Tomboulis (1986), D. A. Johnston (1988),
S. Hawking et al (1990, . . . ), ....
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Loop effects and complex poles resolve the issue?

According to the works done in 70-ies and 80-ies, the main hop e
to have unitary & renormalizable fourth-derivative QG is re lated
to the splitting of real massive pole of a fourth-derivative theory
into a couple of complex conjugate poles, at the quantum leve l.

E. Tomboulis (1977,1980,1984),
A. Salam and J. Strathdee (1978), . . .

In this case one has to consider always a scattering of a pair o f
the conjugate particles, it opens the way to have unitary the ory.

S. Hawking et al (1990, . . . ), ....

The main problem is that the definite resolution of the proble m
of unitarity in the fourth-derivative model requires compl ete
information about the dressed propagator.

D. A. Johnston, NPB (1988).

Do we really need so much?
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Complex ghosts and Lee-Wick unitarity in QG

Starting from Tomboulis (1977) and Salam and Strathdee (1978)
the main hope in the “minimal” fourth-derivative QG was that the
real ghost pole splits into a couple of complex conjugate pol es
under the effect of quantum corrections.

One-loop effects, large- N approximation and lattice-based
considerations indicated an optimistic picture, but unfor tunately
all of them are not conclusive, as shown by Johnston (1988).

However, for six- or more- derivative theory of QG, one can ju st
start from the theory which has only complex massive poles.

L. Modesto, and I.Sh. PLB (2016), arXiv:1512.07600.

It turns out that such a theory is unitary and, moreover,
this property may probably hold even at the quantum level.
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Let us write the six-derivatives action in a slightly differ ent form:

S = − 2
κ2

∫

d4x
√−gR −

∫

d4x
√−g

{α

2
CµναβΠ2Cµναβ+αωRΠ0R

}

,

where Π0,2 = Π0,2
(

�
)

= 1 + ... are some polynomials of order k .
After the Wick rotation the equations for the poles are

αΠ2(p2)p2 = 2M2
P , αωΠ0(p2)p2 = M2

P .

Let us consider the six-order theory,

Π2(p2) = 1 +
p2

2A2
, Π0(p2) = 1 +

p2

2A0
, A0,2 ∼ [mass]2.

The solution for the tensor part: p2 = m2
2 = −A2 ±

√

A2
2 +

4A2M2
P

α
.

Possible cases: • Two real positive solutions: 0 < m2
2+ < m2

2− .

• Two pairs of complex conjugate solutions.
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In QFT theory of the field hαβ the condition of unitarity of the
S - matrix can be formulated in a usual way,

S†S = 1 , or S = 1 + iT and − i(T − T †) = T †T .

By defining the scattering amplitude as

〈f |T |i〉 = (2π)D δD(pi − pf )Tfi .

we arrive at
−i (Tfi − T ∗

if ) =
∑

k

T ∗
kf Tki .

Assuming that for the forward scattering amplitude i = f ,
previous equation simplifies to

2 Im Tii =
∑

k

T ∗
ik Tik > 0 .

The detailed analysis of tree-loop, one-loop and multi-loo p
diagrams shows that this relation is satisfied because massi ve
poles always show up in a complex conjugate pairs.
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The main issue is stability

Certainly, the unitarity of the S- matrix is not the unique
condition of consistency of the quantum gravity theory.

The most important feature is the stability of physically re levant
solutions of classical general relativity in the presence o f higher
derivatives and massive ghosts.

The problem is well explored for the cosmological backgroun ds.
Gravitational waves on de Sitter space ( energy ≪ Mp):

A. A. Starobinsky, Let. Astr. Journ. (in Russian) (1983).

S. Hawking, T. Hertog, and H.S. Real, PRD (2001).
J. Fabris, A. Pelinson and I.Sh., NPB (2001).

J. Fabris, A. Pelinson, F. Salles and I.Sh., JCAP, arXiv:1112.5202.

More general FRW-backgrounds:

F. Salles and I.Sh., PRD, arXiv:1401.4583.
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More general cosmological backgrounds

1000 2000 3000 4000 5000 6000
t
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- 4000
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Example: radiation-dominated Universe. There are no growi ng
modes until the frequency k achieves the value ≈ 0.5 in Planck
units. Starting from this value, we observe instability as a n
effect of massive ghost.

The anomaly-induced quantum correction is O(R3
....). Until the

energy is not of the Planck order of magnitude, these
corrections can not compete with classical O(R2

....) - terms.

Massive ghosts are present only in the vacuum state. We just d o
not observe them “alive” until the energy scale MP .
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What can we do with (trans)Planck frequencies?

Let us take a look at the simplest possible equation for the
fourth-derivative gravity without quantum or semiclassic al
corrections,

1
3

h(IV) + 2Hh(III) +
(

H2 +
M2

P

32πa1

)

ḧ +
1
6
∇4h
a4 − 2

3
∇2ḧ
a2 − 2H

3
∇2ḣ
a2

−
(

HḢ + Ḧ + 6H3 − 3M2
P
H

32πa1

)

ḣ −
[ M2

P

32πa1
− 4

3

(

Ḣ + 2H2
) ]∇2h

a2

−
[

24ḢH2 + 12Ḣ2 + 16HḦ +
8
3

H(III) − M2
P

16πa1

(

2Ḣ + 3H2
) ]

h = 0.

It is easy to note that the space derivatives ∇ and hence the
wave vector ~k enter this equation only in the combination

~q =
~k

a(t)
.

When the universe expands, the frequency becomes smaller!
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Patrick Peter, Filipe de O. Salles, I.Sh., On the ghost-induced
instability on de Sitter background. PRD (2018), arXiv:1801.00063

The qualitative conclusion is perfectly well supported by
numerical analysis, including the case when the semiclassi cal
corrections are taken into account.

The growth of the waves really stops at some point. At least in
the cosmological setting this may be a solution of the proble m.
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Confinement of ghosts?

The idea of confinement of ghosts with complex poles and
residues, is in the air. The inspiration comes from QCD.

N. Nakanishi, Prog. Theor. Phys. 54 (1975) 1213.

Complex poles and higher derivative QG:

E. Tomboulis (1977,1980,1984),
A. Salam and J. Strathdee (1978),
I. Antonidis & E. Tomboulis (1986),
D. A. Johnston (1988),
S. Hawking et al (1990, . . . ), ....

Confinement in higher derivative QG:

B. Holdom and J. Ren, arXiv:1512.05305 and PRD.
M. Frasca, A. Ghoshal and N. Okada, arXiv:2106.07629 and PRD.
M. Frasca, A. Ghoshal and A. Koshelev, arXiv:2207.06394 and PLB.
J. Liu, L. Modesto and G. Calcagni, arXiv:2208.13536 and JHEP.
G.P. de Brito, arXiv:2309.03838 and PRD.
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Confinement of ghosts?

Is it possible to form normal bound states out of massive
ghosts? The answer is positive in the complex case.

M. Asorey, G. Krein, I.Sh. arXiv:2408.16514

Consider the six-derivative Euclidean Lagrangian

L6der =
1
2
ψ (−∂2)(−∂2 + m2)(−∂2 + m∗2)ψ + V (ψ) .

There is a massless mode and two complex conjugate modes.

The auxiliary fields representation of the ghost part has the form

Lgh =
i
2
ϕ1
(

− ∂2 + m2)ϕ1 −
i
2
ϕ2
(

− ∂2 + m∗2)ϕ2 + U(ϕ1, ϕ2) .

For out toy model, we choose

U(ϕ1, ϕ2) = −λ12

4
ϕ2

1ϕ
2
2, where g =

λ12

(2π)4 .
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The scheme which we use for exploring the possibility
of a bound state is what is commonly utilized in QCD.

M. Asorey, G. Krein, I.Sh. arXiv:2408.16514

Let us make the simplest possible computation.

Let Oϕ1ϕ2(x) be the composite operator

Oϕ1ϕ2(x) = ϕ1(x)ϕ2(x).

Consider the correlation function

C(x , y) =

∫

d4p
(2π)4 e−ip·(x−y) C(p) = 〈Oϕ1ϕ2(x)Oϕ1ϕ2(y)〉

=
1

Zgh

∫

Dϕ1Dϕ2 Oϕ1ϕ2(x)Oϕ1ϕ2(y) e−Sgh .

It is straightforward to get, using the bubble diagram
C(p) = GB(p) + GB(p)

[

λ12 GB(p)
]

, with

GB(p) =
∫

d4k
(2π)4 Dϕ1(p − k)Dϕ2(k), Dϕ1/2(p) =

± i
p2 + m2/m∗2 .
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Iterate the one-loop result to obtain a Dyson’s type of equat ion:

C(p) = GB(p)
∞
∑

k=0

[

λ12 GB(p)
]k

=
GB(p)

1 − λ12 GB(p)
.

There is a physical bound state if C(p) has a pole at a value
p2 = −M2 and the residue at the pole is positive. This means

1 − λ12 GB(p)
∣

∣

∣

p2=−M2
= 0.

Direct calculation gives the representation

GB(p) =

∫ ∞

0

dk k
4(2π)2 p2

{

(1 − i)µ2 + k2
}−1 {

(1 + i)µ2

+ k2 + p2 −
√

[

(1 + i)µ2 + (k + p)2
][

(1 + i)µ2 + (k − p)2)
]

}

,

where m2 = (1 + i)µ2 and m∗2 = (1 − i)µ2.

The last integral is logarithmically divergent, but this di vergence
can be easily renormalized by momentum substraction

GR
B (p) = GB(p) − GB(p0).

Ilya Shapiro, Confinement of ghosts and stability in higher d erivative quantum gravity



The result can be plotted as shown in Figure.

The denominator as a function of M2 = − p2, where we have
chosen g = π/16 and µ2 = 1. We can clearly observe the pole
and its position is free from ambiguities, regardless the de tailed
analysis is technically not very simple.

Finally, to be a physical pole, its residue should be positiv e.
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Expanding C(p) around the point p2 = −M2, we get

C(p)
∣

∣

∣

p2≈−M2
=

GR
B (−M2) + · · ·

1 − λ12GR
B (−M2)− (p2 +M2)λ12 GR

B
′(−M2) + · · ·

=
RR

G

p2 +M2 + · · · ,

with the residue RR
G given by

RR
G = − 1

GR
B
′(−M2)

> 0 at the pole M2 ≈ 1.56 .

The existence of a physical solution with a bound state of gho sts
depends on the complex masses of the pair (1 ± i)µ, on the
coupling constant g and the momentum substraction point p0.

We found that there is a window where the condensation of
ghosts is possible, g− ≤ g ≤ g+, with g− = 0.11 and g+ = 0.79.

Similar constraints are possible in superrenormalizable Q G
under the special choice of the action. Such a choice will be
compatible with renormalizability and running of coupling s.
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Cosmological implications of ghost confinement
There were general discussions of the theories with
Planck-order cut-off on the energy density of gravitons, e. g.,

G. Dvali, S. Folkerts, C. Germani, PRD (2011), arXiv:1006.0984

The first effect of ghost confinement is imposing a Planck
cut-off on the energy of the gravitational perturbations. I n early
cosmology, looking back in time, as a cosmic perturbation
becomes trans-Planckian, the pair of complex conjugate gho sts
is created and gets confined into a bound state.

This situation rules out the observation of the trans-Planc kian
physics, which was discussed in the literature, starting fr om

J. Martin and R. Brandenberger, hep-th/0005209; and PRD.
A.A. Starobinsky, astro-ph/0104043 and Letters to ZhETP.
L. Barbado, C. Barcelo, L. Garay and G. Jannes, 1109.3593 & JHEP.

In the case of cosmological perturbations, Planck-order cu t-off
may be detected by existing or future observational facilit ies.
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Are these particles, with the masses of the Planck order of
magnitude, which interact only gravitationally, realisti c
candidates to be Dark Matter? To address this question, let us
make a numerical estimate using super-optimistic approach .

At the moment of creating the bound states, assume that the
energy scale is Ein = MP and the initial energy density of these
composite particles is ρBS

in (MP) = M4
P . Consider that right after

this point the inflation starts. Using E ∼ 1/a(t) we get

ρBS(E) ∝ M4
P

(ain

a

)3
=⇒ ρBS(Eend) ∝ M4

P e−3N .

For the critical density using the Friedmann equation

ρc(Eend ) =
3

8πG
H2

end =
3M2

P

8π
H2

end .

Taking Hend ≈ 1012 GeV for the Hubble parameter at the end of
inflation and N = 70 we get

ρBS(Eend ) ∝ ρc(Eend) × 10−78 .

No chance to explain DM with the bound states of ghosts.
Ilya Shapiro, Confinement of ghosts and stability in higher d erivative quantum gravity



Conclusions

• The construction of QG theory which is not restricted to
the IR region, is impossible without higher derivative term s. The
same concerns a consistent formulation of semiclassical th eory,
i.e. quantization of matter fields.

• Including more than four derivatives provides theoretical
advantages: superrenormalizable QG and well-defined
renormalization group flow, free from gauge-fixing ambiguit ies.

• The theories with higher derivatives may be classically
stable when Planck-order cut-off is imposed on perturbatio ns.

• In the theory with 6+ derivatives and complex ghosts it is
possible to meet a confinement of ghosts into normal bound
states, providing aforementioned cut-off.

• There is no definite solution to the problem of ghosts. But it
looks like we know in which corner the solution will be found.
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Ghost-free HD models of gravity

Consider two examples of ghost-free HD models of gravity.

• In the (super)string theory, the object of quantization is a
kind of non-linear sigma-model in two space-time dimension s.

Both metric and matter fields are induced, implying unificati on
of all fundamental forces.

The σ-model approach is close to QFT in curved space,

Sstr =

∫

d2σ
√

g
{

1
2α′

gµνGij(X)∂µX i∂νX j

+
1
α′

εµν√
g

Aij(X)∂µX i∂νX j + B(X)R + T (X)

}

, i, j = 1, 2, ...,D .

The Polyakov approach: conditions of anomaly cancellation
order by order in α′. Critical dimensions:

D=26 for bosonic string, D=10 for superstrings.
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At the first order in α′ the effective equations give GR !

E.S. Fradkin & A. Tseytlin (1985);
C. Callan, D. Friedan, E. Martinec, M. Perry, (1985).

• Metric reparametrization remove ghosts at all orders in α′ .

In the torsionless case the effective action can be written a s

SM =
2
κ2

∫

dDx
√

G e−2φ
{

− R + 4 (∂φ)2

+α′
(

a1RλµνρRλµνρ + a2RµνRµν + a3R2)
}

+ ...

In order to remove ghosts one performs reparametrization of the
background metric Gµν

Gµν −→ G′
µν = Gµν + α′ (x1 Rµν + x2 R Gµν) + ...

where x1,2,... are specially tuned parameters.

B. Zweibach, S. Deser & A.N. Redlich, ... A. Tseytlin (1985-1987).
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Ghost-killing reparametrization doesn’t affect string S-matrix,

Gµν −→ G′
µν = Gµν + α′ (x1 Rµν + x2 R Gµν) + ...

At the same time, Zweibach reparametrization is ambiguous a nd
this actually produce ambiguous physical solutions.

A. Maroto & I.Sh., PLB, hep-th/9706179.

• Even more subtle point is that the effectively working
ghost-killing transformation must be absolutely precise!

Any infinitesimal change produce a ghost with a huge mass.
Moreover, smaller violation of fine-tuning leads to a greate r mass
of the ghost, hence (according to a “standard wisdom”) smaller
violation of fine-tuning produce greater gravitational ins tability.

At low energies we know that the quantum effects are describe d
by QFT, not string theory. Hence, string theory is ghost-free and
unitary only if it completely controls QFT, even in the deep I R.
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An alternative to Zweibach transformation

In the non-local theory

S = − 1
2κ

∫

d4x
√−g

{

R + Gµν
a(�)− 1

�
Rµν

}

, a(�) = e−�/m2

.

A. Tseytlin, PLB, hep-th/9509050.

In this and similar theories propagator of metric perturbat ions
has a single massless pole, corresponding to gravitons.

With this choice there are no ghosts!

The idea is to use Zweibach-like transformation, but arrive at
the non-local theory which is non-polynomial in derivative s,
instead of “killing” all higher derivatives that one can kil l.

One more ambiguity in the (super)string theory.
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IR effects of higher derivatives. Gravitational see-saw?

A.Accioly, B.L. Giacchini, I.Sh., EJPC (2017), arXiv:1604.07348.

Simplest superrenormalizable action,

Sgrav =

∫

d4x
√−g

{ 2
κ2 R +

α

2
R2 +

β

2
R2

µν +
A
2

R�R +
B
2

Rµν�Rµν
}

,

Here κ2 = 32πG = 2M−2
P , and α, β, A, B are free parameters,

where the first two are dimensionless, A, B ∼ (mass)−2 and
we assume this mass has Planck order of magnitude.

In the weak-field limit, gµν = ηµν + κhµν and |κhµν | ≪ 1 one can
identify the masses through the poles of the propagator,

m2
2± =

β ±
√

β2 + 16
κ2 B

2B
, m2

0± =
σ1 ±

√

σ2
1 − 8σ2

κ2

2σ2
,

with σ1 ≡ 3α+ β and σ2 ≡ 3A + B.
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The see-saw requires a relation

m2
2+ ≪ m2

2− =⇒ 16|B| ≪ κ2β2 ,

In the theory where this condition is satisfied the masses can be
approximated by

m2
2+ ≈ 4

κ2|β| ≪ m2
2− ≈ β

B
.

As in the original neutrino’s seesaw mechanism one of the
masses depends mainly on only one parameter, while the other
depends on both. And this is a very general situation, indeed .

1
m4

0

k6 − 3
m2

1

k4 + 3β k2 − m2
2 = 0 .

The lightest mass depends only on β, while the largest one
depends on both parameters. No see-saw in HDQG !

Is it a good news? There is no threat to the Planck protection
against ghosts, if such protection exist. But it will be certainly
difficult to observe the effect of higher derivatives.

Ilya Shapiro, Confinement of ghosts and stability in higher d erivative quantum gravity


