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Restriction of gauge theories

Parental gauge theory

Consider generic gauge theory
⋏
S[φI ] subject to a closed algebra of irreducible

local gauge generators
⋏
RI

α,

⋏

S,I

⋏

RI
α = 0,

⋏

RI
α,J

⋏

RJ
β −

⋏

RI
β,J

⋏

RJ
α =

⋏

RI
γ

⋏

Cγ
αβ . (1)

⊛ Irreducibility: rank
⋏
RI

α = range α ≡ m0 (m0 <
⋏
n ≡ range I)

Restricted theory

Restricted theory, originating from the parental one, is the theory with

configuration space constrained by the equations

θa(φI) = 0. (2)

⊛ Consider functions θa(φI) to be independent: rank θa,I = range a ≡ m1
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Representations of the restricted theory

Representation on extended configuration space

Sλ[φ, λ ] =
⋏

S[φ ]− λaθ
a(φ), (3)

Reduced configuration space representation

Let restriction surface, Σθ : θa[φ] = 0, be parametrized via fields ϕi

φI = eI(ϕ), θa
(
eI(ϕ)

)
≡ 0 (4)

Then action of the restricted theory in equivalent reduced representation

Sλ[φ, λ ] ↔ Sred[ϕ ] (5)

is just

Sred[ϕ ] =
⋏

S[ e(ϕ) ] (6)
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Residual gauge symmetry

Symmetry of
⋏
S:

⋏

δξ
⋏

S =
⋏

S,I

⋏

RI
αξ

α = 0
−→

Residual symmetry of Sλ:
⋏

δξ
⋏

S − λa

⋏

δξθ
a = 0− λaθ

a
,I

⋏

RI
αξ

α := 0
(7)

Thus residual symmetry of Sλ is defined by restriction on gauge parameters

ξα = ξα(ε) : θa,I
⋏

RI
αξ

α(ε) ≡ Qa
αξ

α(ε) ≡ 0 (8)

ερ — some set of infinitesimal parameters of the residual gauge symmetry

Qa
α ≡ θa,I

⋏

RI
α — gauge-restriction operator (9)

Its rank properties define basic dynamical and gauge properties of the restricted theory

Iff Qa
α — full-rank (rank Qa

α = m1), then restriction is just gauge fixing.

⊛ Regularity assumption

rank Qa
α

∣∣
Σθ

≡ m1 −m2 = const, m2 — rank deficit (at Σθ) (10)

This imply range ρ = m0 − m1 + m2 for the space of residual gauge parameters ερ
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Restricted theory dynamics

Generically physical space of the restricted theory is not the subspace of that of

the parental theory.

EoM for
⋏
S:

⋏

S,I
∼=0 −→ EoM for Sλ:

{
⋏

S,I − λa θ
a
,I

∼=0,
θa ∼=0.

(11)

Theories are classically equivalent if on shell λa
∼=0 and Qa

α— full-rank.

The latter two conditions are not independent. They are equivalent.

On shell behavior of λa

Gauge restriction operator Qa
α defines equations of motion for λa

λaQ
a
α = 0 (12)

On shell λa — left kernel of Qa
α.

If Qa
α — full-rank, then on shell λa

∼=0, solutions of restricted theory are subfamily of

solutions of the parental theory.

If Qa
α — rank-deficient, then under regularity conditions on θa, for λa ̸= 0 there are

new solutions absent in the parental theory.



Setup Effective Action Unimodular Gravity Conclusions

Effective action

Suppose the parental gauge theory
⋏
S[φI ] is well-elaborated. In particular we know

expressions for its quantum effective action (EA).

Can we use this knowledge to construct EA of the restricted theory Sred[ϕi]?

Yes, We Can!

Morover,
we can preserve configuration-space and gauge covariance of the parental theory

Configuration space reduction: φI → ϕi. Field operators aij in the restricted theory

Residual gauge symmetry: ξα → ερ. Ghost-sector operators bρσ in the restricted

theory

We can construct one-loop EA in terms of determinants of operators AIJ and Bα
β

Price to be paid: reducible “parental-covariant” gauge generator set
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Reducible gauge generators of the restricted theory

Residual symmetries
Instead of working with irreducible set of residual parameters ερ

ξα = ξα(ε) : Qa
αξ

α(ε) ≡ 0 (13)

where Qa
α ≡ θa,I

⋏
RI

α one can use the reducible set of gauge parameters

ξαreducible = Tα
β ξβ , Tα

β — projector: Qa
α Tα

β = 0 (14)

Convenient alternative
Even more convenient: to formulate the residual gauge symmetries

δξφ
I =

⋏
RI

αT
α
β ξβ (15)

with free gauge parameters ξα, projecting instead the parental generators
⋏
RI

α

RI
β ≡

⋏

RI
α Tα

β — reducible set of gauge generators (16)

Projector Tα
β = δαβ − kα

a (Qk)−1a
b Q

b
β (17)

kα
a — arbitrary structure with rank condition rank (Qk)ab = rank Qa

α = rank kβ
b
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Theorem
Provided the parental theory had gauge algebra

⋏

RI
α,J

⋏

RJ
β −

⋏

RI
β,J

⋏

RJ
α =

⋏

RI
γ

⋏

Cγ
αβ +

⋏

EIJ
αβ

⋏

S,J , (18)

the projected gauge generators of the restricted theory satisfy

RI
α,JRJ

β − RI
β,JRJ

α = RI
γC

γ
αβ + EIJ

αβ

⋏

S,J (19)

with new structure functions Cγ
αβ and EIJ

αβ

C
γ
αβ ≡ T

γ
ζ

⋏
C

ζ
δϵT

δ
αT

ϵ
β + N

γ
βα − N

γ
αβ , (20)

E
IJ
αβ ≡ D

I
KD

J
L

⋏
E

KL
γ δ T

γ
αT

δ
β , (21)

where

N
γ
αβ ≡ T

γ
δk

δ
a,J (Qk)

−1a
bQ

b
αRJ

β , (22)

D
I
J ≡ δ

I
J −

⋏
RI

ϵk
ϵ
a(Qk)

−1a
bθ

b
,J . (23)

• For EKL
γ δ ∼

⋏
EKL

γ δ ̸= 0 (21) is not an open algebra of generators for the

restricted theory due to the last term.

• If the parental algebra (18) is closed,
⋏
EKL

γ δ = 0, one gets the closed algebra of

the residual generators RI
α.
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Restricted gauge theory setup with reducible generators

• Initial gauge invariant action

Sλ[φI , λa ] Sred[ϕi ] (24)

• Reducible gauge generators (α, β... = 1, ... ,m0)

RI
α =

⋏
RI

βT
β
α : Sλ

,IRI
α = 0 Ri

α = eiRI
α : Sred

,i Ri
α = 0 (25)

• First-stage reducibility generators (a, b... = 1, ... ,m1 < m0)

Zα
a = kαbµ

b
a : RI

αZα
a = Ri

αZα
a = 0 (26)

kα
b — projector parameter from Tα

β = δαβ − kα
a (Qk)−1a

b Qb
β , (17)

µb
a — arbitrary operator so that rank kα

a = rank kα
bµ

b
a (will be fixed later)

• Second-stage reducibility generators (A,B... = 1, ... ,m2 < m1)

For generic restriction, which is not a gauge fixing, there exist

Za
A : Zα

aZa
A = 0 (27)

• Alternatively:
• Quantities with indices a (except θa and its derivatives) consider as

defined on the functional space of dimensionality m1 −m2 (orthogonal
to Za

A)
• Inverses of m2-degenerate operators Ba

b are defined in the
Moore-Penrose sence

Modification allows to use 1-stage reducible BV without loosing gauge covariance
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Batalin-Vilkovisky procedure for 1-stage reducible gauge theories

Batalin-Vilkovisky configuration space

BV procedure for action Sred[ϕi ] with reducible generators Ri
α = eiIRI

α imply

configuration space extension

Φ = (ϕi, Cα, Ca︸ ︷︷ ︸
Φmin

, C̄α, C̄a, C′a, πα, πa, π′a),

Φ∗ = (ϕ∗
i , C∗

α, C∗
a︸ ︷︷ ︸

Φ∗
min

, C̄∗α, C̄∗a, C′∗
a , π

∗α, π∗a, π′∗
a).

Φ gh (Φ) Φ∗ gh (Φ∗)
minimal sector

ϕi 0 ϕ∗
i −1

Cα +1 C∗
α −2

Ca +2 C∗
a −3

auxiliary sector

C̄α −1 C̄∗α 0
πα 0

C̄a −2 C̄∗a +1
πa −1

C′a 0 C′∗
a −1

π′a +1

BV master action
Proper solution SBV[Φ,Φ∗] = Smin+Saux of the master equation

(
SBV,SBV

)
= 0

Smin = Sred[ϕ] + ϕ∗
iRi

αCα + C∗
αZα

aCa + ... , Saux = παC̄∗α+ πaC̄∗a+ C′∗
a π′a.

Gauge fixing
Ψ [Φ ] = C̄α

(
χα(ϕ) + σα

a(ϕ) C′a︸ ︷︷ ︸
Xα(ϕ,C′a)

)
+ C̄a ωa

α(ϕ) Cα + 1
2

(
C̄ακαβπβ + C̄aρabπ

′b+πaρ
a
bC

′b). (28)

Gaussian gauge fixing: detκαβ ̸= 0, ” det ρab” ̸= 0.
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Gauge-fixed action and generating functional

SΨ [Φ ] = SBV
[
Φ, δΨ [Φ ]/δΦ

]
→ Z =

∫
DΦ e i SΨ [Φ ] (29)

(BV procedure defines generating functional modulo contribution of local measure)

Integration over auxiliary fields πα, πa, π′a gives

Z =

∫
DΦred

(
detκαβ

)−1/2
det ρab e i SFP [Φred], (30)

Φred — the reduced set of BV fields Φred = (ϕi, C′a, Cα, C̄α, Ca, C̄a)
SFP [Φred] — the Faddeev-Popov action

SFP [Φred] = Sred[ϕ ]− 1
2
XακαβX

β︸ ︷︷ ︸
Sgf [ϕ,C′]

+ C̄α
(
Xα

,iRi
β − σα

a ρ−1 a
b ω

b
β︸ ︷︷ ︸

Fα
β

)
Cβ+ C̄a

(
ωa

αZα
b︸ ︷︷ ︸

Fa
b

)
Cb + ... (31)

Restricted theory specific — the particular structure of Ri
β and Zα

b .

The effective action should be k-independent, which suggests

Zα
b = kαa (Qk)−1a

b (32)

This agrees with canonical (BFV) normalization of the path integral measure.
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One-loop effective action

Z1−loop
restricted= eiΓ

1−loop

=
det ρab(

detκαβ
)1/2 detFα

β(
detFij

)1/2(
detκab

)1/2
detF a

b

(33)

inverse propagators auxiliary quantities

Fij ≡ Sred
,ij −Xα

,iΠαβX
β
,j ,

Fα
β ≡ Xα

,iRi
β − σα

aρ
−1a

b ω
b
β ,

Fa
b ≡ ωa

γZ
γ
b .

κab ≡ σα
aκαβσ

β
b ,

κba ≡
(
κab

)−1
,

Παβ ≡ καβ − καγσ
γ
aκ

abσ δ
bκ δβ ,

This form of EA is covariant w.r.t. parental gauge algebra space, but is built on

reduced configuration space.

Parental configuration space covariance

Z1−loop
restricted=

det ρab(
detκαβ

)1/2 detFα
β(

detFIJ

)1/2(
detΘab

)1/2(
detκab

)1/2
detF a

b

(34)

FIJ = Ŝ,IJ−λa θa,IJ−Xα
,IΠαβX

β
,J , Θab ≡ θa,IF

−1 IJθb,J . (35)

Gauge fermion components are defined on parental space φI , Fij = eI,ie
J
,jFIJ ,

and lifted Fα
β = Xα

,IRI
β − σα

aρ
−1a

b ω
b
β (which is true since RI

β is tangential to Σθ).
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Parental and restricted theories’ EA interrelation

Disentangling of restriction condition
The set of functions θa, according to the rank deficit of Qa

α, can be split into
gauge-invariant functions θA, rangeA=m2 , and gauge-fixing θp, range p=m1−m2

θa → (θA, θp) : δ(θa) = δ(θA) δ(θp)Y, Y ≡ det[Y A
a Y p

a ] ≡ ∂(θA, θp)/∂θa (36)

θp — conditions of partial gauge fixing χp ≡ θp,

θA — gauge invariants, which are forced to vanish in the restricted path integral, are

responsible for inequivalence of the restricted and parental theories.

Restricted–parental one-loop relation
For theories with the Jacobian Y independent of integration fields in the one-loop
order there is simple relation of the restricted and parental theories

Z1−loop
restricted = Ẑ1−loop

(
detΘAB

)−1/2
(37)

ΘAB ≡ θA
,I F̂

−1 IJθB
,J , F̂IJ = Ŝ,IJ − χα

,Iκαβχ
β
,J − λAθA

,IJ (38)

– ΘAB is defined in terms of the Green’s function of F̂IJ of the parental theory with a
source λA at gauge-invariant observable θA.
– the presence of source term may be interpreted as going off shell and calculating on
backgrounds Ŝ,I = λAθA

,I , which specify saddle points of restricted theory.

– to compare Z1−loop
restricted and Ẑ1−loop in (37) these objects should be calculated on the

same backgrounds.
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Unimodular gravity (UMG)

Parental theory — Einstein general relativity

Ŝ[φ ] 7→ SE[ gµν ] =

∫
d4x

√
g1/2(x)R(gµν(x)), φI 7→ gµν(x), I 7→ (µν, x) (39)

Gauge transformations δξφ
I = R̂I

αξ
α 7→ diffeomorphisms δξgµν = ∇µξν+∇νξµ,

so that the gauge generators

⋏
RI

α 7→ 2gα(µ∇ν)δ(x, y), I 7→ (µν, x), α 7→ (α, y) (40)

Restriction
Unimodular restriction of (39) — restriction to the subspace of metrics gµν(x)

with a unit determinant, g(x) ≡ − det gµν(x) = 1

θa 7→ θx ≡ θ(x) = g1/2(x)− 1, a 7→ x, (41)

θa,I 7→ θx, µν,y = 1
2
g1/2gµνδ(x, y), a 7→ x, I 7→ (µν, y) (42)

The gauge-restriction operator (9)

Qa
α 7→ Qx

α,y = g1/2∇αδ(x, y) = ∂α
(
g1/2(x)δ(x, y)

)
, (43)
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Restricted theory – Unimodular gravity
Action

Sλ[ gµν , λ ]=

∫
d4x

(
g1/2R(gµν)− λ(g1/2−1)

)
(44)

Equations of motion

δSλ

δgµν
= −g1/2

(
Rµν − 1

2
gµνR+ 1

2
λgµν

)
= 0,

δSλ

δλ
= −(g1/2−1) = 0 (45)

The Lagrange multiplier λ(x) on shell is constant

λaQ
a
α = 0 7→ −g1/2∂αλ = 0 (46)

The vacuum solution of equations of motion is a generic Einstein space metric gµν ,

Rµν = Λ gµν , Λ = λ/2 = const (47)

with a unit determinant g ≡ − det gµν = 1.

Physical difference

Left kernel of Qa
α of dim. m2 = 1 is spanned by the zero mode Y A

a 7→ Yx = 1

Gauge-invariant physical degree of freedom constrained by the UMG restriction

θA = Y A
a θa = 0 7→ θ̄ =

∫
d4x (g1/2(x)− 1) = 0, (48)

is the full spacetime volume,
∫
d4x g1/2 | θ=0 =

∫
d4x, not specified in GR.
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The projector Tα
β

The following choice of kαb provides covariance w.r.t. coordinate change

kαb 7→ kα,x
y = ∇αδ(x, y), α 7→ (α, x), b 7→ y, (49)

(Qk)ab 7→ (Qk)xy = g1/2□δ(x, y) a 7→ x, b 7→ y (50)

where ∇α = gαβ∇β , □ = gαβ∇α∇β , (acting on scalars).

Thus the projector Tα
β(Q, k) 7→ Tα,x

β,y = Tα
β(∇)δ(x, y) corresponds to operator

Tα
β(∇) = δαβ −∇α 1

□∇β . (51)

Tα
β(∇) is a projector on the subspace of spacetime transverse vectors.

Tα
β(∇) is nonlocal, where 1

□
is the Green’s function of □, understood in the

Moore-Penrose sense (orthogonal to □ zero constant mode ).



Setup Effective Action Unimodular Gravity Conclusions

Gauge fixing
To preserve explicit covariance we use background gauge fixing

χα 7→ χα(x) = g1/2∇µhα
µ(x) ≡ g1/2gµβgαν∇β

(
gµν(x)− gµν(x)

)
(52)

(on UMG background is the DeWitt gauge g1/2gαβ(∇µhβµ− 1
2 g

µν∇βhµν))

For reasons of explicit covariance one can choose

καβ 7→ κα,x β,y= g1/2gαβδ(x, y), (53)

σα
a 7→ σα,x

y = −g1/2gαβ∇βδ(x, y) = −g1/2(x)kα,x
y | gµν→ gµν

, (54)

ωa
α 7→ ωx

α,y= g1/2∇αδ(x, y) = Qx
α,y | gµν→ gµν

, (55)

ρab 7→ ρxy= g1/2δ(x, y), (56)

(where in (54) ∇ acts on scalar, in (55) ∇ acts on vector)

Since σα
a,I does not depend on dynamic metric, extra ghost C′a vanish on shell and

Xα
,I = χα

,I 7→ g1/2gα(µ∇ν)δ(x, y). (57)

Derived structures

κab ≡ σα
aκαβσ

β
b 7→ κxy = −g1/2□δ(x, y), (58)

σa
β ≡ κabσα

bκαβ 7→ σx
β,y = −

1

□
g−1/2∇βδ(x, y), (59)

Παβ ≡ καβ − καγσ
γ
aσ

a
β 7→ Πα,x β,y =

(
g−1/2gαβ −∇α

1

□
g−1/2∇β

)
δ(x, y).(60)
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Inverse propagators

FIJ 7→ Fµν αβ(∇) δ(x, y),

Fµν αβ(∇) = 1
2
g1/2

(
gµ(αgβ)ν□+ 2Rµ(ανβ) − 2∇(µ∇ν) 1

□
∇(α∇β)

+gµν∇(α∇β) + gαβ∇(µ∇ν) − gµνgαβ(□+ 1
4
R)

)
,(61)

Fα
β 7→ Fα

β(∇) δ(x, y),

Fα
β(∇) = g1/2

(
(□+ 1

4
R)δαβ − 1

2
R∇α 1

□
∇β

)
, (62)

Fa
b = δab 7→ Fx

y = ”δ(x, y)”. (63)

(background equations were used to simplify equations, which is legitimate in one-loop)

The operators acquired nonlocal parts generated due to nonlocal projectors.

In the local part of the tensor operators are not minimal.

Calculation strategies

• via general heat kernel methods on generic backgrounds (the operators should

be transformed to forms with local and (preferably) minimal principal symbols)

• via decomposition of the space of tensor and vector fields into irreducible
transverse and traceless components
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GR and UMG one-loop EA (generic heat kernel)

UMG

Z1−loop
UMG =

det
(
□ δαβ + R

4
δαβ

)
[
det(□ δ αβ

µν + 2R
(α β)
µ ν )

]1/2
[

det
(
□+ R

2

)
det′

(
□+ R

2

)]1/2

. (64)

Note the nontrivial factor[
det

(
□+ R

2

)
det′

(
□+ R

2

) ]1/2

= (2Λ)1/2, (65)

which is a function of the dynamical global degree of freedom Λ in UMG.

GR
Modulo constant extra factor, the result (64) exactly coincides with the one-loop
contribution of gravitons in Einstein theory with the action

SΛ[ gµν ] =

∫
d4x g1/2(R− 2Λ) (66)

and the on-shell value of the cosmological constant Λ = R/4,

Ẑ1−loop
E (Λ) =

det
(
□ δαβ + R

4
δαβ

)
[
det(□ δ αβ

µν + 2R
(α β)
µ ν )

]1/2
∣∣∣∣∣
Rµν=Λgµν

. (67)
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GR and UMG one-loop EA (York decomposition)

UMG
Via minimal determinants of operators for irreducible tensor representations

Z1−loop
UMG =

[
detT

(
□ δµν + R

4
δµν

)
detTT

(
□ δ αβ

µν + 2R
(α β)
µ ν

) ]1/2

(68)

It manifestly exhibits 5 traceless-tensor modes minus 3 transverse vector modes.

Note the disappearance of the additional factor in (64)

GR
On the contrary, in this representation this factor is generated in the GR

calculations

Ẑ1−loop
E =

[
detT

(
□ δµν + R

4
δµν

)
detTT

(
□ δ αβ

µν + 2R
(α β)
µ ν

) ]1/2

×

[
det′

(
□+ R

2

)
det

(
□+ R

2

) ]1/2

(69)

In terms of minimal determinants on constrained (irreducible) fields the one-loop

result for Einstein theory with Λ again differs by the constant-mode contribution

of the operator □+ R
2
.
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Conclusions

• Restricted theory formalism is formulated. It relates the dynamics and
quantum properties of two theories, connected by local full-rank
restriction on configuration space of the parental theory.
In particular it gives simple relation between quantum effective actions.
Particular case: restriction is a pure gauge fixing. Checks part of the results.

(Note: Related are objects of physically nonequivalent theories!)

• The formalism have been tested for the Unimodular gravity (UMG) as
the restricted General relativity.
These theories differ by one global degree of freedom and the formalism explicitly

shows this.

• Limitations:
– directly applied when restricting theories with closed gauge algebras,
– reasonable regularity relations for restriction should be checked.
(Weakening of some rank conditions is possible).

• Nonlocality issue. (Simple criteria for generic theory not found yet.)
Condensed DeWitt notation hides boundary terms and nonlocality structures
which can break part of the residual gauge invariance of restricted theory.

In particular it enters the game for most of the GUMG models, forcing the change

of canonical constraint structure of the theories.
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