Efim Centennial

Fradkin Conference _
Lebedev Institute / September 2-6, 2024 o ‘ .
\

KK reduction of Horndeski and the speed of
gravity.

based on papers with Volkova, Shtennikova, Valencia-Villegas, Sharov
2405.02281, 2408.01480, 2408.04626, 2408.06329

S. Mironov

INR RAS, ITMP, ITEP (NRCKI)

ESF, LPI, 3 September 2024



Framework

e We consider Horndeski (and beyond Horndeski), subclasses of
DHOST theories.



Framework

e We consider Horndeski (and beyond Horndeski), subclasses of
DHOST theories.

e These scalar-tensor theories allow to break NEC in a healthy way,
without instabilities or other pathologies,

and are very general



Framework

e We consider Horndeski (and beyond Horndeski), subclasses of
DHOST theories.

e These scalar-tensor theories allow to break NEC in a healthy way,
without instabilities or other pathologies,

and are very general

e They are extensively used for

— early Universe cosmology



Framework

e We consider Horndeski (and beyond Horndeski), subclasses of
DHOST theories.

e These scalar-tensor theories allow to break NEC in a healthy way,
without instabilities or other pathologies,

and are very general

e They are extensively used for
— early Universe cosmology

— modern Universe cosmology



Framework

e We consider Horndeski (and beyond Horndeski), subclasses of
DHOST theories.

e These scalar-tensor theories allow to break NEC in a healthy way,
without instabilities or other pathologies,

and are very general

e They are extensively used for
— early Universe cosmology
— modern Universe cosmology

— compact objects and other modified gravity solutions
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As well as wormhole-like solutions
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NEC-violation

e NEC was considered robust for a long time

e indeed, violation of NEC leads to pathologies in the theory unless
one considers higher derivatives in the action

- for all linear perturbations of each dynamical field in the theory
m™ =70+ X, 8uv = B + hu
quadratic action  L®) = LU¢% — Lv(8:¢)> - 2w¢?
and dispersion relation Uw? = Vp? + W
stability requirement: u>0, V>0, W>0.
(sub)luminality requirement: vV<Uu

e Horndeski theory and beyond



beyond Horndeski

S= /d4X\/—g(£2 + L3+ Lo+ Ls+ Lpn),

Ly = F(m, X),

L3 = K(m, X)Om,

L4 = —Gu(m, X)R + 2Gax (m, X) [(DW)Q — |

1 . o
Ls = Gs(m, X) G 'mp + §G5X {(Dﬁ)3 — 307w 4 2, T } )
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where 7 is the Galileon field, X = g7 7, 7
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9r (:1\*> Fr 2 . (V¢)?
5:/dfd3xa3 = (b)) = 555 (0ihf)” +GsC = Fs =

The speeds of sound for tensor and scalar perturbations are, respectively,
Fr Fs

Gr’ Gs

A healthy and stable solution requires correct signs for kinetic and
gradient terms as well as subluminal propagation:

2 _ 2
Cr = Cs =

Gr>Fr>e>0, Gs>Fs>e>0

These coefficients are combinations of Lagrangian functions and have
non-trivial relations

YG7? YGr?
Gs = gi: 367, Gs = ?; 1367,
d d
Fe=20_ T = fs—*i—}'ﬂ (2)
adt ) adt
aGr a(Gr —Dr)Gr
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Early Universe

e Different "successful" models of the early Universe:
— different new models of Inflations

— bouncing cosmologies

— genesis models

- various combinations

e By "successful" we mean not only stable (healthy), but also
satisfying experimental data

— amplitude and tilt of the scalar spectum
- amplitude of tensor spectrum (r-ratio)
— anisotropies and non-gaussianities

- PTA experiments, neutrino, ...
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Early Universe cosmology

e Another issue that arises in Horndeski cosmology is apparent no-go
theorem

If one tries to construct globally stable non-singular solution

e This issue was also resolved in many different ways

— geodesically incompliteness

— strong gravity in the past

— 6=0

— cuscuton

— spatial curvature

— different geometry or formalism (torsion, Palatini)
- consider beyond Horndeski or DHOST theory
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Static compact objects

e No-go for wormhole solutions in Horndeski theory
e "almost" resolved in beyond Hondeski

e Many different "successful" blackhole solutions (with or without
hair)
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Modern Universe cosmology

e We consider Horndeski theory (and beyond Horndeski)

e There is an additional phenomenological restriction,
if we study modern Universe (models of dark energy and dark

matter)

e Speed of gravitational waves is very close to the speed of light

cr==cC
|<¢ —1] <1071
e In addition to Horndeski we consider U(1) vector field (EM = light)
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For trivial Maxwell electrodynamics (c=1) it means ¢ = 1 too.
o _ T

C =

T Gr
There is a possibility to constrain Lagrangian functions and/or
background

Since speed are so close we assume ¢ = ¢ to be a natural property
of the theory

(without constrains on the background)
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Gr = 2G4 — 4XGyx + XG5¢
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- 2Gsx = Gsy



Horndeski:

Gr = 2G4M

Fr =2Gy—XGsg
Gsx =0
G4X = 0

G5¢:0
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Horndeski:

Gr =2G,
Fr =2G,
Gsx =0

Gyx =0
Gsy =0
Gy = Ga(9)
Gs = const

Beyond Horndeski
gT = 2G4 — 4XG4X + 2F4X2
Fr =2Gy
Fo = 2

Gs = const
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Modified Maxwell

e Let us consider ¢ # 1
e The only requirement then is ¢ = ¢

e This, in principle, can be achieved by a proper modification of the
Maxwell theory

e How to find such modifications?

- Couple photon to a disformally connected metric

- Consider general scalar-photon couplings and solve the constraint
Cr==¢C

- We propose a natural way to modify Maxwell in accordance with
gravity

e Kaluza-Klein compactification from higher dimensions
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KK compactification of Horndeski theory

R> — R* x St
* Generalized Galileons — Generalized Galileons

2nd derivatives in the action — 2nd derivatives in the action

no higher derivatives in EOMs — no higher derivatives in EOMs

* Metric + scalar —  Metric + vector + scalar + scalar
[U(1) gauge]



Horndeski theory

S= /dsx\/—g(ﬁz + L3+ L4+ Ls)

Ez = F(ﬂ',)()7
L3 = K(m, X)Or,

L4 = Ga(m, X)R + Gax(m, X) {(Dﬂ')2 — ﬂ';m,,ﬂ""’”} ,

1 . .
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Horndeski theory

5:/dSX\/—g(£2+£3+£4+£5+£5),

Ly = F(m, X),
L3 = K(m,X)Or,

L4 = Ga(m, X)R + Gax(, X) [(mf - w;mnw;m”} ,

Ls = Gs(m, X)G™ . — %G_:,X [(mf 30T ™ 4 27r;m,,773m'7r;,”} ,
L6 = Go(m, X) O [R?] + Gox(m, X) O [R(V?1)?] + Goxx(m, X) O [(V?m)*] ,
where 7 is the Galileon field, X = f%g”’”mmw,n,

m,n=0.4

_ Buv + ¢2 Au Au ¢2 AM
8mn = ¢2 Au ¢2



Horndeski theory

SI/dSX\/*g(E2+£3+£4+£5+%),

£2 = F(?‘l’,)()7
L3 = K(m, X)Or,

L4 = Gy(mr, X)R + Gax (7, X) {(DW)2 - W;mmmn} ,

GS(W)G Tmn — 6G5X [( ) +27Tmn7r 7T/ :| )

EG—W+W+W7

where 7 is the Galileon field, X = —Eg’"”mmmn,
m,n=0.4

_ guv+¢2AuAV ¢2AM
8mn = ¢2 Az/ ¢2



¢(£2 + £3 + [«4) + £4AM + £4¢ =
/d4xv—g¢

Ga(m, X) + Gz(mw, X)Ox + Ga(m, X) (R - f¢ F? — ZD(;)

V,¢VFr Or — §¢2 F.° Foo V' V”w)}

(RMV _ %gll«u R) Vy,Vyﬂ'

1 1
g RVse V' + 2 (060m = VgV Vn) + 56" Fu Vo F'7 Vin

+Gax(m, X) ((O7) = (Vu Vo) +2 é

85+ La, + Lao = [ d*x V=56 Ga(r)

¢

1 LV o
+§¢ FroE (3 gup(_4g>\” oo T8x5 g““) vkﬂvﬁqﬂ'ﬁi’ Bop (_4 vva7r+gpuD7r)):|



Horndeski cosmology Speed of graviton

S= /d4xs/—g(£2 + L3+ L4+ Ls),

£2 = F(TF,X),
L3 = K(m, X)Om,

L4 = Gy(mr, X)R + Gax (m, X) [(Dwf - WWWW} ,

1 . .
Ls = Gs(m, X)G*' 7., — 6G5X |:(D’]T)3 — 307w, , T + 27r;m,7r'“p7r;p”} ,

1 -2
Sr= / dnd’x a* [232 (QT (hu> — T (O h,-j)zﬂ

Gr = 2[Gy — 2XGy x — X (HitGsx — Gs)]
]:T =2 [G4 — X(7"TG'5X + G5¢)]
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Horndeski cosmology Speed of graviton

S= /d4x\/—g(£2 + L3+ L4+ Ls),

£2 = F(T&',X),
L3 = K(m,X)On,

L4 = Gay(m, X)R + Gax (1, X) [(mf Ep—r

1 .
Ly = GS(W)GIWW;;W - 6G5X [(DT‘-)?’ — + 27T;Mv7r'up7r;pu}7

c2=c2#1

gT =2 [G4 — 2XG4,X - X (Mf G5¢)]
Fr =2[G4 — X (3655 + Gs)]
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allowed Horndeski theory

S= /d“ng (Lo + L3+ La),

Ly = F(7T7X)7
L3 = K(m, X)Om,
£4 = G4(7T)R

Ls=cG"my,

SZ/d4X\/—g(£2+£3+£4+£5)7

£2 = F(ﬂ',)()7
L3 = K(m,X)On,

L4 = Ga(m, X)R + Gyx(m, X) | (On) — Tt ]
£5 = G5(7T)GMV7T;/“,

Fab four, Vainstein
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Let us consider spherically symmetrical dynamical background

2 tensor modes vector 2 scalars
v N\ VAN (8
odd even odd even 2 even
¢ v

Odd sector of the theory (graviton+photon)



(2 _ S il i
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£(2 iy = = [Cjvivi — Q,-jv"/vj/ + Q,-j\'/"vf/ — 0+ 1)M;j(gz)vivj +...

’ Eigenvalues ~—

(WPKj — k*Gij — wkQjj — £(L + 1) Mj(42))

cf—Z\/El-c,—%zo
C’gi) \/7.7:|:1\/>

rQ_CrV’ rQ_CV

2 . S2y—1 )
(Co i — 7K Mkj)

2 _ 2 _ z
€.~ %y = 7

=0

Eigenvalues




£(+V = Kyvivi — Q,-jv"/vj/ + Q,-J-\'/"vf/ — 0+ 1)/\/l;j(gz)vivj +...

’ Eigenvalues ~—

(WPKj — k*Gij — wkQjj — £(L + 1) Mj(42))

c—2\/7‘7 c,—%
) Z ffilf

Q =c'y, Q=G
2 22 -1 _
(Co 1y — Z i Mkj) =0

2 _ 2 _ z
€.~ %y = 7

Eigenvalues

=26 (61— Gix%p — Gor (X = 57 )]

G =20 Gy~ 26ux (X — 55 ) + Gox (X = 5]
H = 20[Gs — 2Gx X + G5, X]
J =26 i (Gax — Gsy)



Horndeski theory — U(1) vector gauge field

5:/d4x\/—g(£2+£3+ﬁ4+£5),
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Horndeski theory — U(1) vector gauge field

S= /d4X\/—g(ﬁ2+£3+£4+£5)7

Ly = F(ﬂ-aX)v
L3 = K(m, X)Om,

Ly = _G4(TF7X)R+2G4)((TI',X) |:(D7T)2 _’/T;/.wﬂ—;/“/ ;
1 ‘ .
£5 = G5(7T7 X)GMUW;MV + §G5X |:(D7T)3 - 3D7T7T;MV7T'MV + 27T;HV7T'NP7T;/JV:| )

L4 — non minimal coupling to A,



Horndeski theory — U(1) vector gauge field

5=/d4Xv—g(£2+Ea+£4+L5),

£2 = F(’TT,X),
L3 = K(m, X)Om,

L4 = —Ga(m, X)R + 2Gax(, X) [(mf - w;MW} ,
1 . .
Ls = Gs(m, X)GH' 7., + §G5X |:(|:|7T)3 — 3077, , T + ZW;I,,VTr'“pTF;,,V},

Le = G6(7T,X)O [RZ] + Gﬁx(ﬂ',X)O [R(V27T)2} + G5xx(7T,X)O [(VZTI')Zl] R

Ls, Le — A, is a vector Galileon



¢(£2 + L3+ £4) + [:4/\M + £4¢ =
/d4x V—go

Ga(m, X) + Gz(mw, X)Ox + Ga(m, X) (R - f¢ F? — 2D¢¢>

VuoVin On — §¢2 F.° Fuo V¥ V”w)}

(RMV _ %gll«u R) Vuvl,ﬂ'

55 RVuoVim+ ; (O¢ 07 — V. V¢V V" T) + %@2 Fruw Vo FY7 Vi

+Gax(m, X) ((O7) = (Vu Vo) +2 é

¢Ls + Lsa, + Lsg = /d4X V—8 ¢ Gs(m)

¢

1 v o
g fF p(3 8o(—4 87 83087 8iio) VTV 646 o (4 vuvp7r+gpum)ﬂ
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cg=c

cg#c

General Relativity
quintessence/k-essence [46]
Brans-Dicke/ f(R) [47, 48]

Kinetic Gravity Braiding [50]

Horndeski

quartic/quintic Galileons [13, 14]
Fab Four [15]
de Sitter Horndeski [49]
Guud*¢” [51], f(¢)-Gauss-Bonnet [52]

Derivative Conformal (19) [17]
Disformal Tuning (21)
quadratic DHOST with 4, = 0

quartic/quintic GLPV [18]
quadratic DHOST [20] with A; # 0
cubic DHOST [23]

Viable after GW170817

Non-viable after GW170817

L = V=gV;(¢)G" V.4V,
Ly = V=gVy(9) POV, 6V 0V, V 36,
£y = V=gVi(9)R,

Ly = V=gVi(#)G,

Vainshtein



