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NEC-violation

• NEC was considered robust for a long time

• indeed, violation of NEC leads to pathologies in the theory
- for all linear perturbations of each dynamical field in the theory
π = π0 + χ, gµν = g̃µν + hµν

quadratic action L
(2)
ζ = 1

2U ζ̇
2 − 1

2V (∂iζ)2 − 1
2W ζ2

and dispersion relation Uω2 = Vp2 + W

stability requirement: U > 0 , V > 0 , W ≥ 0 .
(sub)luminality requirement: V ≤ U

• Horndeski theory
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beyond Horndeski

S =

∫
d4x
√
−g (L2 + L3 + L4 + L5 + LBH) ,

L2 = F (π,X ),

L3 = K (π,X )2π,

L4 = −G4(π,X )R + 2G4X (π,X )
[
(2π)2 − π;µνπ;µν

]
,

L5 = G5(π,X )Gµνπ;µν +
1
3
G5X

[
(2π)3 − 32ππ;µνπ;µν + 2π;µνπ;µρπ ν

;ρ

]
,

LBH = F4(π,X )εµνρσε
µ′ν′ρ′σπ,µπ,µ′π;νν′π;ρρ′+

+F5(π,X )εµνρσεµ
′ν′ρ′σ′

π,µπ,µ′π;νν′π;ρρ′π;σσ′

where π is the Galileon field, X = gµνπ,µπ,ν , π,µ = ∂µπ, π;µν = OνOµπ,
2π = gµνOνOµπ, G4X = ∂G4/∂X



S =

∫
dtd3xa3

[GT
8

(
ḣTik

)2
− FT

8a2

(
∂ih

T
kl

)2
+ GS ζ̇2 −FS

(Oζ)2

a2

]
The speeds of sound for tensor and scalar perturbations are, respectively,

c2
T =

FT
GT

, c2
S =

FS
GS

A healthy and stable solution requires correct signs for kinetic and
gradient terms as well as subluminal propagation:

GT ≥ FT > ε > 0, GS ≥ FS > ε > 0

These coefficients are combinations of Lagrangian functions and have
non-trivial relations

GS =
ΣGT 2

Θ2 + 3GT , GS =
ΣGT 2

Θ2 + 3GT ,

FS =
1
a

dξ
dt
−FT , ⇒ FS =

1
a

dξ
dt
−FT ,

ξ =
aGT 2

Θ
. ξ =

a (GT −Dπ̇)GT
Θ

.

(2)



Early Universe

• Different "successful" models of the early Universe:

− different new models of Inflations
− bouncing cosmologies
− genesis models
− various combinations
• By "successful" we mean not only stable (healthy), but also

satisfying experimental data
− amplitude and tilt of the scalar spectum
− amplitude of tensor spectrum (r -ratio)
− anisotropies and non-gaussianities
− PTA experiments, neutrino, ...
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Early Universe cosmology

• Another issue that arises in Horndeski cosmology is apparent no-go
theorem

If one tries to construct globally stable non-singular solution

• This issue was also resolved in many different ways
− geodesically incompliteness
− strong gravity in the past
− θ = 0
− cuscuton
− spatial curvature
− different geometry or formalism (torsion, Palatini)
− consider beyond Horndeski or DHOST theory
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• No-go for wormhole solutions in Horndeski theory

• "almost" resolved in beyond Hondeski
• Many different "successful" blackhole solutions (with or without
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Modern Universe cosmology

• We consider Horndeski theory (and beyond Horndeski)

• There is an additional phenomenological restriction,
if we study modern Universe (models of dark energy and dark
matter)

GW 170817
• Speed of gravitational waves is very close to the speed of light

cT ≈ c

| cTc − 1| < 10−15

• In addition to Horndeski we consider U(1) vector field (EM = light)
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• For trivial Maxwell electrodynamics (c=1) it means cT = 1 too.

• c2
T =

FT
GT

• There is a possibility to constrain Lagrangian functions and/or
background

• Since speed are so close we assume cT = c to be a natural property
of the theory

(without constrains on the background)
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-
- G5φ = 0
• G4 = G4(φ)

• G5 = const

• Beyond Horndeski

• F4 = 2G4X
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• G5 = const
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Modified Maxwell
• Let us consider c 6= 1

• The only requirement then is cT = c

• This, in principle, can be achieved by a proper modification of the
Maxwell theory

• How to find such modifications?

- Couple photon to a disformally connected metric
- Consider general scalar-photon couplings and solve the constraint
cT = c

- We propose a natural way to modify Maxwell in accordance with
gravity

• Kaluza-Klein compactification from higher dimensions
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[
(2π)2 − π;mnπ

;mn
]
,

L5 = G5(π,X )Gmnπ;mn −
1
6
G5X
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(2π)3 − 32ππ;mnπ

;mn + 2π;mnπ
;mlπ n
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]
,

where π is the Galileon field, X = − 1
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ḣij
)2
−Fτ (∂k hij)

2
)]

GT = 2 [G4 − 2XG4,X − X (Hπ̇G5X − G5φ)]

FT = 2 [G4 − X (π̈G5X + G5φ)]



Horndeski cosmology Speed of graviton

S =

∫
d4x
√
−g (L2 + L3 + L4 + L5) ,

L2 = F (π,X ),

L3 = K (π,X )2π,

L4 = G4(π)R +
((((

((((
((((

(
G4X (π,X )

[
(2π)2 − π;µνπ;µν

]
,

L5 =���
�G5(π,X )Gµνπ;µν −

((((
((((

(((
((((

(((
((

1
6
G5X

[
(2π)3 − 32ππ;µνπ;µν + 2π;µνπ;µρπ ν

;ρ

]
,

c2
T = c2

v = 1

GT = 2
[
G4 −����2XG4,X −(((((

(((X (Hπ̇G5X − G5φ)
]

FT = 2
[
G4 −(((((

(((X (π̈G5X + G5φ)
]



Horndeski cosmology Speed of graviton

S =

∫
d4x
√
−g (L2 + L3 + L4 + L5) ,

L2 = F (π,X ),

L3 = K (π,X )2π,

L4 = G4(π,X )R + G4X (π,X )
[
(2π)2 − π;µνπ;µν

]
,

L5 = G5(π)Gµνπ;µν −
((((

(((
((((

(((
((((

((
1
6
G5X

[
(2π)3 − 32ππ;µνπ;µν + 2π;µνπ;µρπ ν

;ρ

]
,

c2
T = c2

v 6= 1

GT = 2 [G4 − 2XG4,X − X (���
�Hπ̇G5X − G5φ)]

FT = 2 [G4 − X (���π̈G5X + G5φ)]



allowed Horndeski theory

S =

∫
d4x
√
−g (L2 + L3 + L4) ,

L2 = F (π,X ),

L3 = K (π,X )2π,

L4 = G4(π)R

L5 = c Gµνπ;µν

S =

∫
d4x
√
−g (L2 + L3 + L4 + L5) ,

L2 = F (π,X ),

L3 = K (π,X )2π,

L4 = G4(π,X )R + G4X (π,X )
[
(2π)2 − π;µνπ;µν

]
,

L5 = G5(π)Gµνπ;µν

Fab four, Vainstein



allowed Horndeski theory

S =

∫
d4x
√
−g (L2 + L3 + L4) ,

L2 = F (π,X ),

L3 = K (π,X )2π,

L4 = G4(π)R

L5 = c Gµνπ;µν

S =

∫
d4x
√
−g (L2 + L3 + L4 + L5) ,

L2 = F (π,X ),

L3 = K (π,X )2π,

L4 = G4(π,X )R + G4X (π,X )
[
(2π)2 − π;µνπ;µν

]
,

L5 = G5(π)Gµνπ;µν

Fab four, Vainstein



allowed Horndeski theory

S =

∫
d4x
√
−g (L2 + L3 + L4) ,

L2 = F (π,X ),

L3 = K (π,X )2π,

L4 = G4(π)R

L5 = c Gµνπ;µν

S =

∫
d4x
√
−g (L2 + L3 + L4 + L5) ,

L2 = F (π,X ),

L3 = K (π,X )2π,

L4 = G4(π,X )R + G4X (π,X )
[
(2π)2 − π;µνπ;µν

]
,

L5 = G5(π)Gµνπ;µν

Fab four, Vainstein



Let us consider spherically symmetrical dynamical background

2 tensor modes vector 2 scalars
↙↘ ↙↘ ⇓

odd even odd even 2 even
↘ ↙

Odd sector of the theory (graviton+photon)



Let us consider spherically symmetrical dynamical background

2 tensor modes vector 2 scalars
↙↘ ↙↘ ⇓

odd even odd even 2 even

↘ ↙
Odd sector of the theory (graviton+photon)



Let us consider spherically symmetrical dynamical background

2 tensor modes vector 2 scalars
↙↘ ↙↘ ⇓

odd even odd even 2 even
↘ ↙

Odd sector of the theory (graviton+photon)



L(2)
h+V = Kij v̇

i v̇ j − Gijv i ′v j ′ +Qij v̇
iv j ′ − `(`+ 1)Mij(`2)v

iv j + . . .

(
ω2Kij − k2Gij − ωkQij − `(`+ 1)Mij(`2)

)∣∣
Eigenvalues

= 0

c2
r − 2

√
B
A
J
F · cr −

G
F = 0

c
(±)
r =

√
B
A
J
F ±

1
F
√
Z

c+r ,Q = c+r ,V , c−r ,Q = c−r ,V(
c2
θ · Iij − J2

A K
−1
ik Mkj

)∣∣∣
Eigenvalues

= 0

c2
θ,Q = c2

θ,V = Z
FH

F = 2φ
[
G4 − G4X

π̇2

A − G5π

(
X − π̇2

A

)]
G = 2φ

[
G4 − 2G4X

(
X − π̇2

2A

)
+ G5π

(
X − π̇2

A

)]
H = 2φ [G4 − 2G4XX + G5πX ]

J = 2φ π̇π′(G4X − G5π)



L(2)
h+V = Kij v̇

i v̇ j − Gijv i ′v j ′ +Qij v̇
iv j ′ − `(`+ 1)Mij(`2)v

iv j + . . .

(
ω2Kij − k2Gij − ωkQij − `(`+ 1)Mij(`2)

)∣∣
Eigenvalues

= 0

c2
r − 2

√
B
A
J
F · cr −

G
F = 0

c
(±)
r =

√
B
A
J
F ±

1
F
√
Z

c+r ,Q = c+r ,V , c−r ,Q = c−r ,V(
c2
θ · Iij − J2

A K
−1
ik Mkj

)∣∣∣
Eigenvalues

= 0

c2
θ,Q = c2

θ,V = Z
FH

F = 2φ
[
G4 − G4X

π̇2

A − G5π

(
X − π̇2

A

)]
G = 2φ

[
G4 − 2G4X

(
X − π̇2

2A

)
+ G5π

(
X − π̇2

A

)]
H = 2φ [G4 − 2G4XX + G5πX ]

J = 2φ π̇π′(G4X − G5π)



L(2)
h+V = Kij v̇

i v̇ j − Gijv i ′v j ′ +Qij v̇
iv j ′ − `(`+ 1)Mij(`2)v

iv j + . . .

(
ω2Kij − k2Gij − ωkQij − `(`+ 1)Mij(`2)

)∣∣
Eigenvalues

= 0

c2
r − 2

√
B
A
J
F · cr −

G
F = 0

c
(±)
r =

√
B
A
J
F ±

1
F
√
Z

c+r ,Q = c+r ,V , c−r ,Q = c−r ,V(
c2
θ · Iij − J2

A K
−1
ik Mkj

)∣∣∣
Eigenvalues

= 0

c2
θ,Q = c2

θ,V = Z
FH

F = 2φ
[
G4 − G4X

π̇2

A − G5π

(
X − π̇2

A

)]
G = 2φ

[
G4 − 2G4X

(
X − π̇2

2A

)
+ G5π

(
X − π̇2

A

)]
H = 2φ [G4 − 2G4XX + G5πX ]

J = 2φ π̇π′(G4X − G5π)



L(2)
h+V = Kij v̇

i v̇ j − Gijv i ′v j ′ +Qij v̇
iv j ′ − `(`+ 1)Mij(`2)v

iv j + . . .

(
ω2Kij − k2Gij − ωkQij − `(`+ 1)Mij(`2)

)∣∣
Eigenvalues

= 0

c2
r − 2

√
B
A
J
F · cr −

G
F = 0

c
(±)
r =

√
B
A
J
F ±

1
F
√
Z

c+r ,Q = c+r ,V , c−r ,Q = c−r ,V

(
c2
θ · Iij − J2

A K
−1
ik Mkj

)∣∣∣
Eigenvalues

= 0

c2
θ,Q = c2

θ,V = Z
FH

F = 2φ
[
G4 − G4X

π̇2

A − G5π

(
X − π̇2

A

)]
G = 2φ

[
G4 − 2G4X

(
X − π̇2

2A

)
+ G5π

(
X − π̇2

A

)]
H = 2φ [G4 − 2G4XX + G5πX ]

J = 2φ π̇π′(G4X − G5π)



L(2)
h+V = Kij v̇

i v̇ j − Gijv i ′v j ′ +Qij v̇
iv j ′ − `(`+ 1)Mij(`2)v

iv j + . . .

(
ω2Kij − k2Gij − ωkQij − `(`+ 1)Mij(`2)

)∣∣
Eigenvalues

= 0

c2
r − 2

√
B
A
J
F · cr −

G
F = 0

c
(±)
r =

√
B
A
J
F ±

1
F
√
Z

c+r ,Q = c+r ,V , c−r ,Q = c−r ,V(
c2
θ · Iij − J2

A K
−1
ik Mkj

)∣∣∣
Eigenvalues

= 0

c2
θ,Q = c2

θ,V = Z
FH

F = 2φ
[
G4 − G4X

π̇2

A − G5π

(
X − π̇2

A

)]
G = 2φ

[
G4 − 2G4X

(
X − π̇2

2A

)
+ G5π

(
X − π̇2

A

)]
H = 2φ [G4 − 2G4XX + G5πX ]

J = 2φ π̇π′(G4X − G5π)



L(2)
h+V = Kij v̇

i v̇ j − Gijv i ′v j ′ +Qij v̇
iv j ′ − `(`+ 1)Mij(`2)v

iv j + . . .

(
ω2Kij − k2Gij − ωkQij − `(`+ 1)Mij(`2)

)∣∣
Eigenvalues

= 0

c2
r − 2

√
B
A
J
F · cr −

G
F = 0

c
(±)
r =

√
B
A
J
F ±

1
F
√
Z

c+r ,Q = c+r ,V , c−r ,Q = c−r ,V(
c2
θ · Iij − J2

A K
−1
ik Mkj

)∣∣∣
Eigenvalues

= 0

c2
θ,Q = c2

θ,V = Z
FH

F = 2φ
[
G4 − G4X

π̇2

A − G5π

(
X − π̇2

A

)]
G = 2φ

[
G4 − 2G4X

(
X − π̇2

2A

)
+ G5π

(
X − π̇2

A

)]
H = 2φ [G4 − 2G4XX + G5πX ]

J = 2φ π̇π′(G4X − G5π)



L(2)
h+V = Kij v̇

i v̇ j − Gijv i ′v j ′ +Qij v̇
iv j ′ − `(`+ 1)Mij(`2)v

iv j + . . .

(
ω2Kij − k2Gij − ωkQij − `(`+ 1)Mij(`2)

)∣∣
Eigenvalues

= 0

c2
r − 2

√
B
A
J
F · cr −

G
F = 0

c
(±)
r =

√
B
A
J
F ±

1
F
√
Z

c+r ,Q = c+r ,V , c−r ,Q = c−r ,V(
c2
θ · Iij − J2

A K
−1
ik Mkj

)∣∣∣
Eigenvalues

= 0

c2
θ,Q = c2

θ,V = Z
FH

F = 2φ
[
G4 − G4X

π̇2

A − G5π

(
X − π̇2

A

)]
G = 2φ

[
G4 − 2G4X

(
X − π̇2

2A

)
+ G5π

(
X − π̇2

A

)]
H = 2φ [G4 − 2G4XX + G5πX ]

J = 2φ π̇π′(G4X − G5π)



Horndeski theory → U(1) vector gauge field

S =

∫
d4x
√
−g (L2 + L3 + L4 + L5) ,

L2 = F (π,X ),

L3 = K (π,X )2π,

L4 = −G4(π,X )R + 2G4X (π,X )
[
(2π)2 − π;µνπ;µν

]
,

L5 = G5(π,X )Gµνπ;µν +
1
3
G5X

[
(2π)3 − 32ππ;µνπ;µν + 2π;µνπ;µρπ ν

;ρ

]
,

L2, L3 → no dynamical Aµ



Horndeski theory → U(1) vector gauge field

S =

∫
d4x
√
−g (L2 + L3 + L4 + L5) ,

L2 = F (π,X ),

L3 = K (π,X )2π,

L4 = −G4(π,X )R + 2G4X (π,X )
[
(2π)2 − π;µνπ;µν

]
,

L5 = G5(π,X )Gµνπ;µν +
1
3
G5X

[
(2π)3 − 32ππ;µνπ;µν + 2π;µνπ;µρπ ν

;ρ

]
,

L4 → non minimal coupling to Aµ



Horndeski theory → U(1) vector gauge field

S =

∫
d4x
√
−g (L2 + L3 + L4 + L5) ,

L2 = F (π,X ),

L3 = K (π,X )2π,

L4 = −G4(π,X )R + 2G4X (π,X )
[
(2π)2 − π;µνπ;µν

]
,

L5 = G5(π,X )Gµνπ;µν +
1
3
G5X

[
(2π)3 − 32ππ;µνπ;µν + 2π;µνπ;µρπ ν

;ρ

]
,

L6 = G6(π,X )O
[
R2]+ G6X (π,X )O

[
R(∇2π)2]+ G6XX (π,X )O

[
(∇2π)4] ,

L5, L6 → Aµ is a vector Galileon



φ(L2 + L3 + L4) + L4Aµ + L4φ =∫
d4x
√
−g φ

[
G2(π, X ) + G3(π, X )2π + G4(π, X )

(
R − 1

4
φ2 F 2 − 2

2φ

φ

)
+G4,X (π, X )

(
(2π)2 − (∇µ∇νπ)2 + 2

1
φ
∇µφ∇µπ2π − 1

2
φ2 Fµ

σ Fνσ∇µπ∇νπ
)]

φL5 + L5Aµ + L5φ =

∫
d4x
√
−g φG5(π)

[(
Rµν − 1

2
gµν R

)
∇µ∇νπ

− 1
2φ

R∇µφ∇µπ +
1
φ
(2φ2π −∇µ∇νφ∇µ∇νπ) +

1
2
φ2 Fµν ∇σF νσ∇µπ

+
1
8
φFµν Fσρ

(
3 gνρ(−4 gλµ gβσ+gλβ gµσ)∇λπ∇βφ+φ gσµ (−4∇ν∇ρπ+gρν2π)

)]



Conclusion and outlook

I Horndeski theory is OK for modern Universe

I There are gauge vector galileons

I To do:

I KK of beyond Horndeski, DHOST
I explicit Vainshtein calculation
I Different compactifications
I · · · · ·

Thank you for your attention!



Conclusion and outlook

I Horndeski theory is OK for modern Universe

I There are gauge vector galileons

I To do:

I KK of beyond Horndeski, DHOST
I explicit Vainshtein calculation
I Different compactifications
I · · · · ·

Thank you for your attention!



Conclusion and outlook

I Horndeski theory is OK for modern Universe

I There are gauge vector galileons

I To do:

I KK of beyond Horndeski, DHOST
I explicit Vainshtein calculation
I Different compactifications
I · · · · ·

Thank you for your attention!



Conclusion and outlook

I Horndeski theory is OK for modern Universe

I There are gauge vector galileons

I To do:

I KK of beyond Horndeski, DHOST

I explicit Vainshtein calculation
I Different compactifications
I · · · · ·

Thank you for your attention!



Conclusion and outlook

I Horndeski theory is OK for modern Universe

I There are gauge vector galileons

I To do:

I KK of beyond Horndeski, DHOST
I explicit Vainshtein calculation

I Different compactifications
I · · · · ·

Thank you for your attention!



Conclusion and outlook

I Horndeski theory is OK for modern Universe

I There are gauge vector galileons

I To do:

I KK of beyond Horndeski, DHOST
I explicit Vainshtein calculation
I Different compactifications
I · · · · ·

Thank you for your attention!



Conclusion and outlook

I Horndeski theory is OK for modern Universe

I There are gauge vector galileons

I To do:

I KK of beyond Horndeski, DHOST
I explicit Vainshtein calculation
I Different compactifications
I · · · · ·

Thank you for your attention!



Conclusion and outlook

I Horndeski theory is OK for modern Universe

I There are gauge vector galileons

I To do:

I KK of beyond Horndeski, DHOST
I explicit Vainshtein calculation
I Different compactifications
I · · · · ·

Thank you for your attention!



Conclusion and outlook

I Horndeski theory is OK for modern Universe

I There are gauge vector galileons

I To do:

I KK of beyond Horndeski, DHOST
I explicit Vainshtein calculation
I Different compactifications
I · · · · ·

Thank you for your attention!



Vainshtein


