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Typical pattern of �Stueckelberg trick"
K. Stueckelberg 1938, modern interpretation and review N. Boulanger,
C. De�ayet, S. Garcia-Saenz and L. Traina, 2018

▶ Action splits into invariant and "symmetry breaking" terms:

S(ϕ) = Sgauge(ϕ) + Snongauge(ϕ) ,

δϵϕ
i = R i

αϵ
α , δϵSgauge ≡ 0, ∀ϵ ; δϵSnongauge ̸= 0 .

▶ Stueckelberg �elds ξα are introduced to shift the original �elds,

ϕi 7→ ϕ̃i (ϕ, ξ) = ϕi+R i
αξ

α+. . . ; δϵξ
α = ϵα+. . . , δϵϕ

i = R i
αϵ

α+. . . ;

SSt = Sgauge(ϕ) + Snongauge(ϕ̃(ϕ, ξ)) , δϵSSt ≡ 0 .

The split onto Sgauge and Snongauge , and choice of symmetry is ambiguous.
Even for Proca action various options are possible,

L = −1

4
F 2

µν +
m2

2
A2

µ = −1

2
(∂µA

µ)2 +
1

2
Aµ(□+m2)Aµ;

(i) δϵAµ = ∂µϵ, δϵF
2

µν = 0 ; (ii)δϵA
µ = ∂νϵ

µν , δϵ(∂µA
µ)2 = 0.
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Batalin-Fradkin conversion of Hamiltonian 2nd class constraints.

Conversion begins with Hamiltonian action for the 2nd class system

S [ϕ, λ] =

∫
dt
(
ρi (ϕ)ϕ̇

i − H(ϕ)λαθα(ϕ)
)
, det{θ, θ} ≠ 0

Conversion idea: phase space is extended by extra variables ξα, ψ =
(ϕ, ξ) with new Poisson brackets det{ψ,ψ} ̸= 0. Number of conversion
variables = number of 2nd class constraints. All the constraints are con-
verted to �rst class:

θα 7→ Tα = θα +∆αβξ
β + . . . , {T , T } ∼ T .

H(ϕ) 7→ H(ϕ, ξ) = H + . . . , {H, T } ∼ T ,

Procedure works well for any θ's. No assumptions are made that there is
the �rst class piece in this action, or any subset of constraints is �rst class.
First works: I.A. Batalin, E.S. Fradkin, 1986;
Abelian conversion � E. S. Egorian, R. P. Manvelyan, + I.A. Batalin,
E.S. Fradkin 1989;
Existence theorem + local construction � I.A. Batalin, I.V. Tyutin 1991;

Non-abelian conversion, global construction and ∗-product for 2nd
class systems � I.A. Batalin, M.A. Grigoriev, S.L. Lyakhovich, 2005
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Involutive closure � the starting point for conversion into gauge system.

For the second class system equations read

Ȯ(ϕ) = {O,HT} , HT = H(ϕ) + λαθα(ϕ)

θα(ϕ) = 0 , λα{θα, θβ}+ {θβ ,H} = 0 .

Key observations:

▶ The equations are involutive, since λ's are �xed � no other zero order
consequences. From the perspective of general PDE theory �xing λ's
means to take involutive closure;

▶ There are gauge identities between equations since di�erential con-
sequences θ̇ ≈ θ reduce to equations that de�ne λ;

▶ There are no gauge symmetry related to these gauge identities.

▶ Conversion of the constraints to the �rst class involves the new vari-
ables ξα such that the consequences Ṫ ≈ 0 become the part of
Noether identity. Hence the system gets gauge symmetry;

▶ Degree of freedom is under control before and after conversion, and
it is unchanged by construction.
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Batalin-Fradkin conversion of Hamiltonian 2nd class constraints:

similarity with and distinctions from the Stuckelberg pattern

Stueckelberg trick

▶ Begins with the covariant ac-
tion;

▶ Assumes split of the ac-
tion into invariant and non-
invariant parts;

▶ Involutive closure is out of in-
terest, gauge identities of the
involutive closure are ignored;

▶ Introduces Stueckelberg �elds
by the �xed ansatz to make the
system gauge invariant;

▶ Degree of freedom is not
counted before and inclusion of
Stueckelberg �elds.

Batalin-Fradkin conversion

▶ Begins with Hamiltonian sec-
ond class system;

▶ It is not assumed to split the
action into �rst class part, and
the remnants;

▶ The system is involutive by
construction. Gauge identities
of the system are explicit;

▶ Introduces the conversion vari-
ables by iterative procedure,
with proven existence;

▶ Degree of freedom is counted
before and after conversion,
and it remains unchanged.
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Covariant inclusion of Stuckelberg �elds by Batalin-Fradkin conversion.

The guide without tricks, and with existence theorem.

1. Take involutive closure of Lagrangian equations by complete set of
the lower order consequences;

2. Find gauge identities between the equations in the involutive closure;

3. Count degree of freedom;

4. Introduce the Stueckelberg �eld for every consequence, and the gauge
parameter for every identity;

5. Iteratively construct the Stueckelberg formalism with the �rst order
of action de�ned by the added consequences, while the �rst order of
gauge symmetry generators is determined by the generators of gauge
identities;

6. Degree of freedom remains unchange upon inclusion of Stueckelberg
�elds;

Existence of the inclusion procedure is proven by the tools of cohomological

perturbation theory in BV formalism. Speci�cs of the proof: the Stueck-

elberg �elds are assigned with positive resolution degree (aka �anti-ghost

number�), though they have zero ghost number.
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Involutive closure and degree of freedom count

Involutive system includes all the lower order consequences. Any system
can be brought into involution by inclusion of the di�erential consequences.
Gauge algebra of involutive system and DoF count. Assume the
system is involutive, but not necessarily variational. Then, there is no
pairing between gauge symmetries and gauge identities

Ta(ϕ, ∂ϕ, ∂
2ϕ . . . ) = 0;

δϵϕ
i = R i

αϵ
α, δϵTa = V b

a Tb LaATa ≡ 0 .

Covariant DoF count: D.S.Kaparulin, S.L., A.A.Sharapov, 2014

NDoF =
∞∑
n=0

n(tn − rn − ln)

tn � number of the equations of n-th order, rn �number of gauge symme-
tries of of n-th order, ln � number of gauge identities of n-th order.
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Involutive closure of variational equations

Variational equations ∂iS(ϕ) are not necessarily involutive. Let us take
involutive closure by adding the lower order consequences. τα(ϕ) ≡
Γiα(ϕ)∂iS(ϕ), such that the system

∂iS(ϕ) = 0 , τα = 0 .

is involutive. Γiα is termed generator of the lower order consequences

The set of the consequences τα is assumed complete and irreducible.
By construction, there are gauge identities in this system:

Γiα(ϕ)∂iS(ϕ) + τα(ϕ) ≡ 0 .

Simplest example of involutive closure � Proca equations,

δSProca
δAµ

≡ −∂νFµν +m2Aµ = 0 , τ ≡ ∂µ
δSProca
δAµ

≡ m2∂µA
µ = 0

Gauge identity:

∂µ
δSProca
δAµ

− τ ≡ 0 .

Covariant degree of freedom count, t2 = 4, t1 = 1, l3 = 1

NDoF =
∞∑
n=0

n(tn − rn − ln) = 2 · 4+ 1 · 1− 3 · 1 = 6

Simon Lyakhovich FIAN�September, 2024 8 / 19



Involutive closure of Hamiltonian 2nd class system and conversion to the

�rst class: lesson to learn for the general variational equations.

Determination of Lagrange multipliers in the second class system is the
example of involutive closure

δS

δx i
≡ ωji ẋ

i − {x i ,HT} = 0,
δS

δλα
≡ θα(x) = 0.

Zero order consequences are the equations that de�ne Lagrange multipliers:

τα(x , λ) ≡
d

dt

δS

δλα
− {θα, x i}

δS

δx i
≡ {θα, θβ}λβ − {θα,H(x)} = 0.

Gauge identity:
d

dt

δS

δλα
− {θα, x i}

δS

δx i
− τα ≡ 0 .

Key observation: Inclusion of conversion variables ξα, θα 7→ Tα =
θα+ ξ− terms turns this non-variational identity into the Noether identity
between variational equations,

d

dt

δSBF
δλα

− {Tα, x i}
δSBF
δx i

− {Tα, ξβ}
δSBF
δξβ

∼ δSBF
δλα
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Covariant conversion for variational system: a general guide.

1. Find the complete set of the lower order consequences τα(ϕ);

2. Find gauge identities in the involutive closure;

3. Introduce Stueckelberg �elds ξα being dual to the consequences;

4. Iteratively construct the Stueckelberg gauge generators proceeding
from the generators of the gauge identities and simultaneously iterate
Stueckelberg action, proceeding from the original action, and the
lower order consequences.

The Stueckelberg action is sought for as a power series in the �elds ξα:

SSt(ϕ, ξ) =
∞∑
k=0

Sk , Sk(ϕ, ξ) = Wα1...αk
(ϕ) ξα1 · · · ξαk ,

S0(ϕ) is the original action, and the �rst coe�cient Wα is de�ned by τα

Wα(ϕ) =
∂SSt(ϕ, ξ)

∂ξα
∣∣ξ = 0

= τα .

At ξ = 0, the �eld equations for the Stueckelberg action reproduce the
involutive closure of the original Lagrangian equations.
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Iterative inclusion of Stueckelberg �elds

The equivalence of the Stueckelberg theory to the original one is provided
by the gauge symmetry such that the �elds ξα can be gauged out, with
ξα = 0 being admissible gauge �xing condition. The gauge transformations
are iteratively sought for order by order of the Stueckelberg �elds

δϵϕ
i = R i

α(ϕ, ξ)ϵ
α , δϵξ

γ = Rγ
α(ϕ, ξ)ϵ

α ,

R i
α(ϕ, ξ) =

∑
k=0

(k)

R
i
α,

(k)

R
i
α(ϕ, ξ) = R i

αβ1...βk
(ϕ)ξβ1 . . . ξβk ;

Rγ
α(ϕ, ξ) =

∑
k=0

(k)

R
γ
α,

(k)

R
γ
α(ϕ, ξ) = Rγ

αβ1...βk
(ϕ)ξβ1 . . . ξβk .

The gauge symmetry of Stueckelberg action means the Noether identities

δϵSSt ≡ 0 , ∀ϵα ⇔ R i
α∂iSSt + Rγ

α

∂SSt

∂ξγ
≡ 0 .

These identities can be iteratively solved for the expansion coe�cients for
the action and gauge generators.
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Sequence of relations for gauge generators and Stueckelberg action(
Rγ
α(ϕ, ξ)

∂

∂ξγ
+ R i

α(ϕ, ξ)
∂

∂ϕi

)
SSt ≡

∑
k=0

k∑
m=0

(
(k−m)

R
γ
α

∂S(m+1)

∂ξγ
+

(k−m)

R
i
α

∂S(m)

∂ϕi

)
≡ 0 .

Once the Noether identities are valid for every order in ξ, each term in the
sum over k vanishes separately. This results in the sequence of relations

k∑
m=0

(
(k−m)

R
γ
α

∂S(m+1)

∂ξγ
+

(k−m)

R
i
α

∂S(m)

∂ϕi

)
≡ 0 , k = 0, 1, 2, . . . .

For k = 0, given the boundary condition at ξ = 0, this reads,

(0)

R
γ
ατγ+

(0)

R
i
α∂iS ≡ 0 .

Any identity between τα and ∂iS reduces to de�nition of τ

(0)

R
γ
α

(
τγ + Γiγ∂iS

)
≡ 0 ,

(0)

R γ
α can be any non-degenerate matrix. We choose it as δγα. Any other choice
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Iterative solution of relations for gauge generators and action

Given the boundary condition for the action, we arrive at the �rst order of
the action and zero order of gauge symmetry

SSt(ϕ, ξ) = S(ϕ)+τα(ϕ)ξ
α+. . . , δϵϕ

i = Γiα(ϕ)ϵ
α+. . . , δϵξ

α = ϵα+. . . ,

To solve the relations for S2 and
(1)

R we consider the gauge identity

Iα ≡
k∑

m=0

(
(k−m)

R
γ
α

∂S(m+1)

∂ξγ
+

(k−m)

R
i
α

∂S(m)

∂ϕi

)
≡ 0 , k = 1, 2, . . . .

at k = 1. Iα is linear in ξβ . Symmetric in α, β coe�cients contribute to
the action, while the antisymmetric ones go to the gauge generators. This
can be seen from the identity

Γiα(ϕ)∂iτβ = Wαβ + R i
αβ∂iS + Rγ

αβτγ , Wαβ = Wβα,

being the di�erential consequence of the relation τα+Γiα∂iS ≡ 0. On shell,

Wαβ ≈ ΓiαΓ
j
β∂

2

ijS , Rαβ ≈ −Rβα.
Deducing higher order consequence of the identities of the involutive clo-
sure, one can iteratively �nd all the higher order structure coe�cients in
the expansion of the action and gauge generators.
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BV master equation for Stueckelberg theory, grading and boundary.

Problem setup: Given the original action S , lower order consequences τα,
and generators of consequences Γiα, to construct the BV-master action for
Stueckelberg theory iterating both in anti-�elds and Stueckelberg �elds.
The set of �elds, anti-�elds, and anti-brackets

ϵ(ϕi ) = ϵ(ξα) = 0, ϵ(Cα) = 1, gh(ϕi ) = gh(ξα) = 0 , gh(Cα) = 1;
ϵ(ϕ∗i ) = ϵ(ξ∗α) = 1, ϵ(C∗

α) = 0, gh(ϕ∗i ) = gh(ξ∗α) = −1, gh(C∗
α) = −2.

(A,B) =
∂RA

∂φI

∂LB

∂φ∗
I

−∂
RA

∂φ∗
I

∂LB

∂φI
, φI = (ϕi , ξα,Cα) , φ∗

I = (ϕ∗i , ξ
∗
α,C

∗
α) .

Boundary condition for the Stueckelberg master action reads

SBV (φ,φ∗) = S(ϕ)− τα(ϕ)ξ
α + CαΓiα(ϕ)ϕ

∗
i + Cαξ∗α + . . . ,

and the higher orders in the anti-�elds and Stueckelberg �elds have to be
found from the master equation

(SBV ,SBV ) = 0 .

Resolution degree is introduced which di�ers from the antighost number

deg(ξα) = deg(ξ∗α) = deg(ϕ∗i ) = 1, deg(C∗
α) = 2, deg(Cα) = deg(ϕi ) = 0 .
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BV master equation for Stueckelberg theory, the �rst iteration

The solution to the master equation is sough for as the expansion of the
action SBV (φ,φ

∗) w.r.t. the resolution degree,

SBV (φ,φ
∗) =

∑
k=0

(k)

S , deg
(k)

S = k .

Once the solution is found in all the orders resolution degree, the complete
Stueckelberg action is extracted as zero order w.r.t. to the anti-ghost
number (i.e. with switched o� anti-�elds), while the Stueckelberg gauge
generators are de�ned by the �rst order of SBV w.r.t. the anti-ghost degree
(i.e. as the coe�cients at ξ∗γ and ϕ∗i ). Consider the master action up to
the next order of the resolution degree after the boundary condition,

SBV (φ,φ∗) = S(ϕ)− ταξ
α + Cα

(
Γiα(ϕ)ϕ

∗
i + ξ∗α

)
+

+
1

2
Wαβξ

αξβ + Cα
(
Rγ
αβξ

βξ∗γ + R i
αβξ

βϕ∗i

)
+

+
1

2
CβCα

(
Uγ
αβC

∗
γ + ϕ∗j ϕ

∗
i E

ij
αβ + ξ∗µϕ

∗
i E

µi
αβ + ξ∗µξ

∗
νE

µν
αβ

)
+ . . . ,
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Master equation for Stueckelberg action, the second order of solution.

Let us expand the l.h.s. of the master equation w.r.t. the resolution degree

up to the �rst order. Notice that
(k)

S , k > 2 cannot contribute to zero and
�rst orders of the expansion, this is su�cient.

(SBV ,SBV )0 = 2(Γiα∂iS + τα)C
α ≡ 0 ,

(SBV ,SBV )1 = 2ξγ(Γiα∂iτγ − R i
αγ∂iS − Rβ

αγτβ −Wγα)C
α −

− CαCβ
(
ϕ∗i (Γ

j
α∂jΓ

i
β − Γjβ∂jΓ

i
α − Uγ

αβΓ
i
γ − R i

αβ + R i
βα

− E ji
αβ∂jS − E iγ

αβτγ)−

− ξ∗µ(U
µ
αβ − Rµ

αβ + Rµ
βα) + E jµ

αβ∂jS − Eµν
αβτν)

)
= 0 .

Zero order relation is valid, given the original gauge identity. The �rst order
of the master equation holds by virtue of identities upon identi�cation of
the structure coe�cients in the expansion with corresponding structure
functions in the di�erential consequences of the original identity.
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Stueckelberg master action, cohomological perturbation theory.

Consider k-th order of the master equation w.r.t. resolution degree

(SBV ,SBV )k = δ
(k+1)

S +Bk(S ,
(1)

S , . . . ,
(k)

S ) ,

Bk involves only
(l)

S , l ≤ k , and the operator δ reads:

δO = −∂
RO

∂ϕ∗i
∂iS − ∂RO

∂ξ∗α
τα +

∂RO

∂C∗
α

(
ϕ∗i Γ

i
α + ξ∗α

)
+
∂RO

∂ξα
Cα .

By virtue of the original identity, the operator δ squares to zero,

δ2O =
∂RO

∂C∗
α

(
Γiα∂iS + τα

)
≡ 0,

so it is a di�erential. Obviously, δ decreases the resolution degree by one,

deg(δ) = −1 .

Notice that δ is acyclic in the strictly positive resolution degree because
the original identities are independent, i.e.

δX = 0, deg(X ) > 0 ⇔ ∃Y : X = δY .

By Jacobi identity (S , (S ,S)) ≡ 0, ∀S . Expanding the identity w.r.t. the
resolution degree, one can see that Bk is δ-closed,

δBk = 0, k > 0.
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Stueckelberg master action, cohomological perturbation theory.

Then, because of acilicity of δ, Bk is δ-exact,

∃Yk+1 : Bk = δYk+1, deg(Yk+1) = k + 1 .

This leads to the relation

δ

(
(k+1)

S +Yk+1

)
= 0 . (1)

This provides solution for
(k+1)

S

(k+1)

S = −Yk+1 + δZk+2, deg(Zk+2) = k + 2 .

The solution is unique modulo natural δ-exact ambiguity.
In this way, one can iteratively �nd the master action of the Stueckelberg
theory, given the original action, generators Γiα of consequences τα included
into the involutive closure of Lagrangian system.
The solution is unobstructed at any order, so the Stueckelberg action can
be always iteratively constructed.
□
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Summary of results

The �ne art of Sueckelberg tricks is converted into

Batalin-Fradkin science for inclusion of the gauge symmetry.

Thank you for your attention!

sll@phys.tsu.ru
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