
RG flow of projectable Hořava gravity in 3+1
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Motivation for Hořava gravity

Einstein GR

SEH =
M2
P

2

∫
dt ddx

√
−gR ⇒ M2

P

2

∫
dt ddx

(
hij�h

ij + . . .
)

(1)

Higher derivative gravity (Stelle 1977)∫ (
R+R2 +RµνR

µν
)
⇒

∫ (
hij�h

ij + hij�
2hij + . . .

)
(2)

The theory is renormalizable and asymptotically free. However the theory is
not unitary due to presence of ghosts.
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Hořava gravity (2009)

The key is the anisotropic scaling of time and space coordinates,

t 7→ b−zt , xi 7→ b−1xi , i = 1, . . . , d (3)

The theory contains only second time derivatives∫
dt ddx︸ ︷︷ ︸
∝ b−(z+d)

(
ḣij ḣij − hij(−∆)zhij + . . .

)
(4)

And field scales as
hij 7→ b(d−z)/2hij (5)

Critical theory
z = d (6)

Foliation preserving diffeomorphisms

t 7→ t′(t) , xi 7→ x′i(t,x) (7)
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Metric decomposition

The metric in the action of HG is expanded into the lapse N , the shift N i and
the spatial metric γij like in the Arnowitt–Deser–Misner (ADM)
decomposition,

ds2 = N2dt2 − γij(dxi +N idt)(dxj +N jdt) . (8)

Fields are assigned the following dimensions under the anisotropic scaling:

[N ] = [γij ] = 0 , [N i] = d− 1 . (9)
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Projectable version

A.Barvinsky, D.Blas, M.Herrero-Valea, S.Sibiryakov, C.Steinwachs (2016)

We consider projectable version of Hořava gravity. The lapse N is restricted to
be a function of time only, N = N(t)

S =
1

2G

∫
dtddx

√
γ
(
KijK

ij − λK2 − V
)
, (10)

where

Kij =
1

2
(γ̇ij −∇iNj −∇jNi) . (11)

The potential part V in d = 3 reads,

V =2Λ− ηR+ µ1R
2 + µ2RijR

ij

+ ν1R
3 + ν2RRijR

ij + ν3R
i
jR

j
kR

k
i + ν4∇iR∇iR+ ν5∇iRjk∇iRjk ,

(12)

This expression includes all relevant and marginal terms. It contains 9
couplings Λ, η, µ1, µ2 and νa, a = 1, . . . , 5.
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Dispersion relations

The spectrum of perturbations contains a transverse-traceless graviton and a
scalar mode. Both modes have positive kinetic terms when G is positive and

λ < 1/3 or λ > 1 . (13)

Their dispersion relations around a flat background are

ω2
tt = ηk2 + µ2k

4 + ν5k
6 , (14a)

ω2
s =

1− λ
1− 3λ

(
− ηk2 + (8µ1 + 3µ2)k4

)
+ νsk

6 , (14b)

where k is the spatial momentum and we have defined

νs ≡
(1− λ)(8ν4 + 3ν5)

1− 3λ
. (15)

These dispersion relations are problematic at low energies where they are
dominated by the k2-terms.

Alexander Kurov RG flow of 4d pHG 6 September, Moscow 6 / 25



Essential couplings

Background effective action Γeff depends on the choice of gauge fixing

Γeff 7→ Γeff + εA, (16)

where A is a linear combination of equations of motion.
The UV behavior of the theory is parameterized by seven couplings G, λ, νa,
a = 1, . . . , 5. The essential couplings can be chosen as follows,

G =
G
√
ν5
, λ, us =

√
νs
ν5
, va =

νa
ν5
, a = 1, 2, 3. (17)

The one-loop β-function of λ depends only on the first three of these couplings
and reads,

βλ = G 27(1− λ)2 + 3us(11− 3λ)(1− λ)− 2u2
s(1− 3λ)2

120π2(1− λ)(1 + us)us
. (18)

The gauge-dependent β-function of G (not G) was also computed.

A.Barvinsky, M.Herrero-Valea, S.Sibiryakov (2019)
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Beta functions

Essential couplings

G =
G√
ν5
, λ, us =

√
(1− λ)(8ν4 + 3ν5)

(1− 3λ)ν5
, va =

νa
ν5
, a = 1, 2, 3, (19)

βλ = G
27(1− λ)2 + 3us(11− 3λ)(1− λ)− 2u2s(1− 3λ)2

120π2(1− λ)(1 + us)us
+O(G2), (20a)

βG =
G2

26880π2(1− λ)2(1− 3λ)2(1 + us)3u3s

7∑
n=0

uns PGn [λ, v1, v2, v3] +O(G3), (20b)

βχ = Aχ
G

26880π2(1− λ)3(1− 3λ)3(1 + us)3u5s

9∑
n=0

uns Pχn [λ, v1, v2, v3] +O(G2), (20c)

where the prefactor coefficients Aχ = (Aus
, Av1 , Av2 , Av3) equal

Aus = us(1− λ), Av1 = 1, Av2 = Av3 = 2. (21)

Example of a polynomial
Pus
2 = −2(1− λ)3

[
2419200v21(1− λ)2 + 8v22(42645λ2 − 86482λ+ 43837)

+ v23(58698− 106947λ+ 48249λ2) + 4032v1
(
462v2(1− λ)2 + 201v3(1− λ)2

+ 30λ2 − 44λ− 10
)

+ 8v2(6252λ2 − 9188λ− 1468) + 8v2v3(34335λ2 − 71196λ

+ 36861) + v3(20556λ2 − 30792λ− 3696) + 4533λ2 − 3881λ+ 1448
]
.
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Fixed points of RG flow

There are 5 solutions for the system of equations

βgi/G = 0 , gi = λ, us, v1, v2, v3 . (22)

They written down in the table

λ us v1 v2 v3 βG/G2 AF?

0.1787 60.57 -928.4 -6.206 -1.711 -0.1416 yes

0.2773 390.6 -19.88 -12.45 2.341 -0.2180 yes

0.3288 54533 3.798×108 -48.66 4.736 -0.8484 yes

0.3289 57317 -4.125×108 -49.17 4.734 -0.8784 yes

0.333332 3.528×1011 -6.595×1023 -1.950×108 4.667 -3.989×106 yes

Invariance of GR under 4d diffeomorphisms sets the value of λ to 1. That’s
why one expects that λ→ 1+ in the IR limit. However, all the solutions lie on
the left side of the unitary domain

λ < 1/3 or λ > 1 (23)

and there are no RG trajectories with λ→ 1+.
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λ→∞ limit

A.Gümrükçüoğlu and S.Mukohyama, Rev. D 83 (2011) 124033

The beta function βλ diverges in the limit λ→∞. For the new variable %, the limit λ =∞
corresponds to the finite % = 1. It’s beta function reads

β% = 3(1− %)G
2u2s + us%(4− 5%)− 3%2

40π2us(1 + us)%
, % ≡ 3

1− λ
1− 3λ

. (24)

Solutions of the system

βχ/G
∣∣∣λ=∞
(%=1)

= 0 , χ = us, v1, v2, v3 . (25)

are written down in the table

№ us v1 v2 v3 βG/G2 AF?
Can flow

out of % = 1?

1 0.0195 0.4994 -2.498 2.999 -0.2004 yes no

2 0.0418 -0.01237 -0.4204 1.321 -1.144 yes no

3 0.0553 -0.2266 0.4136 0.7177 -1.079 yes no

4 12.28 -215.1 -6.007 -2.210 -0.1267 yes yes

5 (A) 21.60 -17.22 -11.43 1.855 -0.1936 yes yes

6 (B) 440.4 -13566 -2.467 2.967 0.05822 no yes

7 571.9 -9.401 13.50 -18.25 -0.0745 yes yes

8 950.6 -61.35 11.86 3.064 0.4237 no yes
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Stability matrix

In the vicinity of a fixed point, the linearized RG flow can be analyzed with
the help of the stability matrix B j

i ,

β̃gi
∼=
∑
j

B j
i (gj − g∗j ), B j

i ≡

(
∂β̃gi
∂gj

)∣∣∣
gi=g∗i

, β̃gi = βgi/G, (26)

where g∗i are fixed point values of the coupling constants.

№ λ θ1 θ2 θ3 θ4 θ5

1 0.1787 -0.3416 -0.06495 0.002639 0.1902 ± 0.1760 i

2 0.2773 -0.06504 0.001944 0.02859 0.2647 0.2751

Table: Eigenvalues θI of the stability matrix for the first two fixed points with
finite λ.
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RG equation

We choose as an initial condition of the RG equation a point slightly shifted
from the fixed point g∗ in the repulsive direction

dgi
dτ

= β̃gi , gi = (v1, v2, v3, us, λ or %),

gi(0) = g∗i + ε cJ w
J
i , J = 1, 2, 3, 4, 5.

(27)

where ε is a small parameter, cJ are constants satisfying
∑
J(cJ)2 = 1 and

wJi are eigenvectors enumerated by the index J , B j
i w

J
j = θJwJi , with θJ < 0.
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RG flows from fixed points at finite λ
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First fixed point at finite λ

θI wλ wv1 wv2 wv3 wus

-0.3416 7.159×10−9 -0.9999 -2.323×10−3 4.48×10−5 3.411×10−4

-0.06495 8.536×10−6 -0.9909 0.09028 -0.05745 0.08206

Table: Stability matrix eigenvectors with negative eigenvalues for the first fixed point

We choose constants cJ in the initial conditions on the unit circle

c1w
1 + c2w

2 = cosϕw1 + sinϕw2 , ϕ ∈ [0, 2π) . (28)
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Second fixed point at finite λ

θI wλ wv1 wv2 wv3 wus

-0.06504 2.511×10−6 1.339×10−3 7.199×10−3 -3.395×10−4 0.9999

Table: Stability matrix eigenvectors with negative eigenvalues for the second fixed
point

There are only two RG trajectories corresponding to different signs of c1.
Projections of one of them are depicted on the plots
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RG flows from fixed points at λ =∞
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Stability matrix

Stability matrix eigenvalues in variables (va, us, %) with % = 1

№ θ1 θ2 θ3 θ4 θ5

1 1.154 -1.235 -0.2734 ± 0.2828 i 0.9825

2 0.5302 -71.95 ± 5.134 i -0.3207 12.35

3 0.3970 -64.72 ± 0.6149 i 0.3012 10.77

4 -0.01334 -0.3436 -0.09353 0.2200 ± 0.1806 i

5 (A) -0.01414 -0.06998 0.06569 0.2565 0.3204

6 (B) -0.01515 0.0924 ± 0.2890 i 0.3079 0.6032

7 -0.01516 -1.722 -0.3324 ± 0.3289 i 0.1328

8 -0.01517 -0.3657 0.4340 ± 0.4849 i 1.326

Table: Eigenvalues θI of the stability matrix for the fixed points with infinite λ.
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From A to B

Eigen-
vector

w% wv1 wv2 wv3 wus

A1 0.0423 -0.0398 5.25×10−3 5.57×10−3 0.998

A2 0 -0.115 -0.224 0.0480 -0.967

B1 2.19×10−5 -0.999 1.87×10−5 5.69×10−6 0.0162

Table: Eigenvectors of the stability matrix with negative eigenvalues for the fixed
points A and B.

First we build the trajectory flowing from point A along the eigenvector A2.
Since this vector has zero %-part, the trajectory stays in the hyperplane % = 1.
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Figure: RG trajectory connecting fixed points A and B. The trajectory lies entirely
in the hyperplane % = 1. Panels show its projections on the (us, v1) and (v2, v3)
planes. Arrows indicate the flow from UV to IR.
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From B to λ→ 1+

Point B has a unique repulsive direction, pointing away from the % = 1
hyperplane. This gives rise to two RG trajectories, depending on the sign of
cB1 in the initial conditions.
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Figure: The couplings (us, va) as functions of % along the RG trajectory from the
fixed point B to % = 0 (λ→ 1+). Arrows indicate the flow from UV to IR.

Alexander Kurov RG flow of 4d pHG 6 September, Moscow 19 / 25



From B to λ→ 1/3−

Point B has a unique repulsive direction, pointing away from the % = 1
hyperplane. This gives rise to two RG trajectories, depending on the sign of
cB1 in the initial conditions.
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Figure: The couplings (us, va) as functions of % along the RG trajectory from the
fixed point B to % = 0 (λ→ 1/3−). Arrows indicate the flow from UV to IR.
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Back to flows from A

We consider a general linear combination of vectors A1 and A2 in the initial
condition (27) at the point A

cA1w
A1 + cA2w

A2 = cosϕAw
A1 + sinϕAw

A2 , (29)

where ϕA ∈ [0, 2π).

The fate of trajectories flowing out
from the fixed point A along the
linear combination of the repulsive
eigenvectors (29) depending on the
angle ϕA. Parameter δ ∼ 2× 10−3ε

Trajectories emanating from the
fixed point A cover the whole
range of λ in the unitarity domain:

λ < 1/3 or λ > 1 .

to Landau pole

to λ → 1/3- to λ → 1+

φA

δ δ
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From A to λ→ 1+ and λ→ 1/3−

Figure: RG flows from the fixed point A to λ→ 1+ (%→ 0+).

Figure: RG flows from the fixed point A to λ→ 1/3− (%→∞).
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From A to λ→ 1+: the behaviour of G

IIIIII
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Figure: Behaviour of G as a function of (λ− 1) along an RG trajectory connecting
the point A to λ→ 1+. In regions I, II and III the dependence is well described by
the power law G ∝ (λ− 1)k with kI = −13.69, kII = 3.84, kIII ≈ 0.37.

In the vicinity of λ = 1, we obtain the following scalings of the couplings

G
∣∣
λ→1
∝ (λ− 1)17/448, us

∣∣
λ→1
∝ (λ− 1)241/448, va

∣∣
λ→1
∝ 1

λ− 1
. (30)

This means that all beta functions diverge when λ→ 1.
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From A to λ→ 1/3−: the behaviour of G
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Figure: Behaviour of G as a function of (λ− 1/3) along an RG trajectory connecting
the point A to λ→ 1/3−. In regions I and II the dependence is well described by
the power law G ∝ (λ− 1/3)k with kI = −13.69, kII = 3.84.
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Conclusions

All the fixed points of RG flow were found.

Trajectories flowing out asymptotically free UV fixed points analyzed.
Most of them hit Landau pole.

It’s nontrivial that there exist two families of trajectories which cover the
whole range of λ in the unitarity domain.

In the IR domain, trajectories of one of the families run to the region
with λ→ 1+, i.e. towards GR value of the coupling λ.
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