RG flow of projectable Hořava gravity in 3+1 dimensions

Alexander Kurov

Lebedev Physics Institute

Efim S. Fradkin Centennial Conference

6 September, Moscow

In collaboration with A.O. Barvinsky and S.M. Sibiryakov

Alexander Kurov

RG flow of 4d pHG

6 September, Moscow 1/25

(日) (同) (日) (日)

Motivation for Hořava gravity

Einstein GR

$$S_{EH} = \frac{M_P^2}{2} \int dt \, d^d x \, \sqrt{-g} R \quad \Rightarrow \quad \frac{M_P^2}{2} \int dt \, d^d x \, \left(h_{ij} \Box h^{ij} + \dots\right) \tag{1}$$

Higher derivative gravity (Stelle 1977)

$$\int \left(R + R^2 + R_{\mu\nu} R^{\mu\nu} \right) \quad \Rightarrow \quad \int \left(h_{ij} \Box h^{ij} + h_{ij} \Box^2 h^{ij} + \dots \right) \tag{2}$$

The theory is renormalizable and asymptotically free. However the theory is not unitary due to presence of ghosts.

2/25

イロト イポト イヨト イヨト

Hořava gravity (2009)

The key is the anisotropic scaling of time and space coordinates,

$$t \mapsto b^{-z}t, \quad x^i \mapsto b^{-1}x^i, \qquad i = 1, \dots, d$$
 (3)

The theory contains only second time derivatives

$$\int \underbrace{dt \, d^d x}_{\propto b^{-(z+d)}} \left(\dot{h}_{ij} \dot{h}_{ij} - h_{ij} (-\Delta)^z h_{ij} + \dots \right) \tag{4}$$

And field scales as

$$h_{ij} \mapsto b^{(d-z)/2} h_{ij} \tag{5}$$

Critical theory

$$z = d \tag{6}$$

Foliation preserving diffeomorphisms

$$t \mapsto t'(t) , \qquad x^i \mapsto x'^i(t, \mathbf{x})$$

$$\tag{7}$$

3/25

(D) (A) (A) (A) (A)

The metric in the action of HG is expanded into the lapse N, the shift N^i and the spatial metric γ_{ij} like in the Arnowitt–Deser–Misner (ADM) decomposition,

$$\mathrm{d}s^2 = N^2 \mathrm{d}t^2 - \gamma_{ij} (\mathrm{d}x^i + N^i \mathrm{d}t) (\mathrm{d}x^j + N^j \mathrm{d}t) \,. \tag{8}$$

Fields are assigned the following dimensions under the anisotropic scaling:

$$[N] = [\gamma_{ij}] = 0 , \qquad [N^i] = d - 1 .$$
(9)

4/25

イロト イヨト イヨト イヨト

Projectable version

A.Barvinsky, D.Blas, M.Herrero-Valea, S.Sibiryakov, C.Steinwachs (2016)

We consider *projectable* version of Hořava gravity. The lapse N is restricted to be a function of time only, N = N(t)

$$S = \frac{1}{2G} \int \mathrm{d}t \, \mathrm{d}^d x \sqrt{\gamma} \left(K_{ij} K^{ij} - \lambda K^2 - \mathcal{V} \right) \,, \tag{10}$$

where

$$K_{ij} = \frac{1}{2} \left(\dot{\gamma}_{ij} - \nabla_i N_j - \nabla_j N_i \right) . \tag{11}$$

The potential part \mathcal{V} in d = 3 reads,

$$\mathcal{V} = 2\Lambda - \eta R + \mu_1 R^2 + \mu_2 R_{ij} R^{ij} + \nu_1 R^3 + \nu_2 R R_{ij} R^{ij} + \nu_3 R^i_j R^j_k R^k_k + \nu_4 \nabla_i R \nabla^i R + \nu_5 \nabla_i R_{jk} \nabla^i R^{jk} ,$$
(12)

This expression includes all relevant and marginal terms. It contains 9 couplings $\Lambda, \eta, \mu_1, \mu_2$ and $\nu_a, a = 1, \dots, 5$.

Alexander Kurov

RG flow of 4d pHG

6 September, Moscow 5 / 25

Dispersion relations

The spectrum of perturbations contains a transverse-traceless graviton and a scalar mode. Both modes have positive kinetic terms when G is positive and

$$\lambda < 1/3 \quad \text{or} \quad \lambda > 1 \ .$$
 (13)

Their dispersion relations around a flat background are

$$\omega_{tt}^2 = \eta k^2 + \mu_2 k^4 + \nu_5 k^6 , \qquad (14a)$$

$$\omega_s^2 = \frac{1-\lambda}{1-3\lambda} \left(-\eta k^2 + (8\mu_1 + 3\mu_2)k^4 \right) + \nu_s k^6 , \qquad (14b)$$

where k is the spatial momentum and we have defined

$$\nu_s \equiv \frac{(1-\lambda)(8\nu_4 + 3\nu_5)}{1-3\lambda} \,. \tag{15}$$

These dispersion relations are problematic at low energies where they are dominated by the k^2 -terms.

Alexander Kurov

6 September, Moscow 6 / 25

イロト イポト イヨト イヨト

Essential couplings

Background effective action $\Gamma_{\rm eff}$ depends on the choice of gauge fixing

$$\Gamma_{\rm eff} \mapsto \Gamma_{\rm eff} + \epsilon \mathcal{A},\tag{16}$$

where \mathcal{A} is a linear combination of equations of motion. The UV behavior of the theory is parameterized by seven couplings G, λ , ν_a , $a = 1, \ldots, 5$. The essential couplings can be chosen as follows,

$$\mathcal{G} = \frac{G}{\sqrt{\nu_5}}, \qquad \lambda, \qquad u_s = \sqrt{\frac{\nu_s}{\nu_5}}, \qquad v_a = \frac{\nu_a}{\nu_5}, \qquad a = 1, 2, 3. \tag{17}$$

The one-loop β -function of λ depends only on the first three of these couplings and reads,

$$\beta_{\lambda} = \mathcal{G} \frac{27(1-\lambda)^2 + 3u_s(11-3\lambda)(1-\lambda) - 2u_s^2(1-3\lambda)^2}{120\pi^2(1-\lambda)(1+u_s)u_s} .$$
(18)

The gauge-dependent β -function of G (not \mathcal{G}) was also computed.

A.Barvinsky, M.Herrero-Valea, S.Sibiryakov (2019)

A 1	loarn nd	lon 1	12 mm	
<u></u>	елано	let i	ix ui	υv

RG flow of 4d pHG

6 September, Moscow

7/25

イロト イヨト イヨト イヨト

Beta functions

Essential couplings

$$\mathcal{G} = \frac{G}{\sqrt{\nu_5}}, \qquad \lambda, \qquad u_s = \sqrt{\frac{(1-\lambda)(8\nu_4 + 3\nu_5)}{(1-3\lambda)\nu_5}}, \qquad v_a = \frac{\nu_a}{\nu_5}, \quad a = 1, 2, 3, \quad (19)$$

$$\beta_{\lambda} = \mathcal{G} \frac{27(1-\lambda)^2 + 3u_s(11-3\lambda)(1-\lambda) - 2u_s^2(1-3\lambda)^2}{120\pi^2(1-\lambda)(1+u_s)u_s} + O(\mathcal{G}^2),$$
(20a)

$$\beta_{\mathcal{G}} = \frac{\mathcal{G}^2}{26880\pi^2(1-\lambda)^2(1-3\lambda)^2(1+u_s)^3 u_s^3} \sum_{n=0}^7 u_s^n \mathcal{P}_n^{\mathcal{G}}[\lambda, v_1, v_2, v_3] + O(\mathcal{G}^3),$$
(20b)

$$\beta_{\chi} = A_{\chi} \frac{\mathcal{G}}{26880\pi^2 (1-\lambda)^3 (1-3\lambda)^3 (1+u_s)^3 u_s^5} \sum_{n=0}^9 u_s^n \mathcal{P}_n^{\chi}[\lambda, v_1, v_2, v_3] + O(\mathcal{G}^2), \quad (20c)$$

where the prefactor coefficients $A_{\chi} = (A_{u_s}, A_{v_1}, A_{v_2}, A_{v_3})$ equal

$$A_{u_s} = u_s(1-\lambda), \quad A_{v_1} = 1, \quad A_{v_2} = A_{v_3} = 2.$$
 (21)

Example of a polynomial

$$\mathcal{P}_{2}^{u_{s}} = -2(1-\lambda)^{3} \left[2419200v_{1}^{2}(1-\lambda)^{2} + 8v_{2}^{2}(42645\lambda^{2} - 86482\lambda + 43837) + v_{3}^{2}(58698 - 106947\lambda + 48249\lambda^{2}) + 4032v_{1} \left(462v_{2}(1-\lambda)^{2} + 201v_{3}(1-\lambda)^{2} + 30\lambda^{2} - 44\lambda - 10 \right) + 8v_{2}(6252\lambda^{2} - 9188\lambda - 1468) + 8v_{2}v_{3}(34335\lambda^{2} - 71196\lambda + 36861) + v_{3}(20556\lambda^{2} - 30792\lambda - 3696) + 4533\lambda^{2} - 3881\lambda + 1448 \right].$$

Fixed points of RG flow

There are 5 solutions for the system of equations

$$\beta_{g_i}/\mathcal{G} = 0$$
, $g_i = \lambda, u_s, v_1, v_2, v_3$. (22)

They written down in the table

λ	u_s	v_1	v_2	v_3	$eta_{\mathcal{G}}/\mathcal{G}^2$	AF?
0.1787	60.57	-928.4	-6.206	-1.711	-0.1416	yes
0.2773	390.6	-19.88	-12.45	2.341	-0.2180	yes
0.3288	54533	3.798×10^8	-48.66	4.736	-0.8484	yes
0.3289	57317	-4.125×10^{8}	-49.17	4.734	-0.8784	yes
0.333332	3.528×10^{11}	-6.595×10^{23}	-1.950×10^{8}	4.667	-3.989×10^{6}	yes

Invariance of GR under 4d diffeomorphisms sets the value of λ to 1. That's why one expects that $\lambda \to 1^+$ in the IR limit. However, all the solutions lie on the left side of the unitary domain

$$\lambda < 1/3 \quad \text{or} \quad \lambda > 1 \tag{23}$$

and there are no RG trajectories with $\lambda \to 1^+$.

9/25

$\lambda \to \infty$ limit

A.Gümrükçüoğlu and S.Mukohyama, Rev. D 83 (2011) 124033

The beta function β_{λ} diverges in the limit $\lambda \to \infty$. For the new variable ρ , the limit $\lambda = \infty$ corresponds to the finite $\rho = 1$. It's beta function reads

$$\beta_{\varrho} = 3(1-\varrho)\mathcal{G}\frac{2u_s^2 + u_s \varrho(4-5\varrho) - 3\varrho^2}{40\pi^2 u_s(1+u_s)\varrho}, \quad \varrho \equiv 3\frac{1-\lambda}{1-3\lambda}.$$
(24)

Solutions of the system

$$\beta_{\chi}/\mathcal{G}\Big|_{\substack{\lambda=\infty\\(\varrho=1)}} = 0 , \qquad \chi = u_s, v_1, v_2, v_3 .$$
⁽²⁵⁾

are written down in the table

N⁰	u_s	v_1	v_2	v_3	$eta_{\mathcal{G}}/\mathcal{G}^2$	AF?	Can flow out of $\rho = 1$?
1	0.0195	0.4994	-2.498	2.999	-0.2004	yes	no
2	0.0418	-0.01237	-0.4204	1.321	-1.144	yes	no
3	0.0553	-0.2266	0.4136	0.7177	-1.079	yes	no
4	12.28	-215.1	-6.007	-2.210	-0.1267	yes	yes
5 (A)	21.60	-17.22	-11.43	1.855	-0.1936	yes	yes
6 (B)	440.4	-13566	-2.467	2.967	0.05822	no	yes
7	571.9	-9.401	13.50	-18.25	-0.0745	yes	yes
8	950.6	-61.35	11.86	3.064	0.4237	no	yes

Alexander Kurov

RG flow of 4d pHG

6 September, Moscow

10/25

Stability matrix

In the vicinity of a fixed point, the linearized RG flow can be analyzed with the help of the stability matrix $B_i^{\ j}$,

$$\tilde{\beta}_{g_i} \cong \sum_j B_i^{\ j} (g_j - g_j^*), \quad B_i^{\ j} \equiv \left(\frac{\partial \tilde{\beta}_{g_i}}{\partial g_j}\right) \Big|_{g_i = g_i^*}, \quad \tilde{\beta}_{g_i} = \beta_{g_i} / \mathcal{G}, \tag{26}$$

where g_i^* are fixed point values of the coupling constants.

№	λ	θ_1	θ_2	θ_3	$ heta_4$	θ_5
1	0.1787	-0.3416	-0.06495	0.002639	0.1902 =	$\pm 0.1760 i$
2	0.2773	-0.06504	0.001944	0.02859	0.2647	0.2751

Table: Eigenvalues θ^{I} of the stability matrix for the first two fixed points with finite λ .

11/25

イロト イヨト イヨト イヨト

We choose as an initial condition of the RG equation a point slightly shifted from the fixed point g^* in the repulsive direction

$$\begin{cases} \frac{dg_i}{d\tau} = \tilde{\beta}_{g_i}, \quad g_i = (v_1, v_2, v_3, u_s, \lambda \text{ or } \varrho), \\ g_i(0) = g_i^* + \varepsilon \, c_J \, w_i^J, \quad J = 1, 2, 3, 4, 5. \end{cases}$$
(27)

where ε is a small parameter, c_J are constants satisfying $\sum_J (c_J)^2 = 1$ and w_i^J are eigenvectors enumerated by the index J, $B_i^{\ j} w_i^J = \theta^J w_i^J$, with $\theta^J < 0$.

12/25

イロト イポト イヨト イヨト

RG flows from fixed points at finite λ

RG flow of 4d pHG

6 September, Moscow

æ

13/25

・ロト ・回ト ・ヨト ・ヨト

First fixed point at finite λ

θ^{I}	w_{λ}	w_{v_1}	w_{v_2}	w_{v_3}	w_{u_s}
-0.3416	7.159×10^{-9}	-0.9999	-2.323×10^{-3}	4.48×10^{-5}	3.411×10^{-4}
-0.06495	8.536×10^{-6}	-0.9909	0.09028	-0.05745	0.08206

Table: Stability matrix eigenvectors with negative eigenvalues for the first fixed point

We choose constants c_J in the initial conditions on the unit circle

$$c_1 w^1 + c_2 w^2 = \cos \varphi \, w^1 + \sin \varphi \, w^2 \, , \quad \varphi \in [0, 2\pi) \, .$$
 (28)

Second fixed point at finite λ

θ^{I}	w_{λ}	w_{v_1}	w_{v_2}	w_{v_3}	w_{u_s}
-0.06504	2.511×10^{-6}	1.339×10^{-3}	7.199×10^{-3}	-3.395×10^{-4}	0.9999

Table: Stability matrix eigenvectors with negative eigenvalues for the second fixed point

There are only two RG trajectories corresponding to different signs of c_1 . Projections of one of them are depicted on the plots

Alexander Kurov

RG flow of 4d pHG

6 September, Moscow 15/25

RG flows from fixed points at $\lambda = \infty$

RG flow of 4d pHG

6 September, Moscow

æ

16/25

・ロト ・回ト ・ヨト ・ヨト

Stability matrix

Stability matrix eigenvalues in variables (v_a, u_s, ρ) with $\rho = 1$

N⁰	θ^1	θ^2	$ heta^3$	$ heta^4$	$ heta^5$
1	1.154	-1.235	-0.2734 \pm	$0.2828 \ i$	0.9825
2	0.5302	-71.95 ±	5.134 <i>i</i>	-0.3207	12.35
3	0.3970	-64.72 \pm	$0.6149 \ i$	0.3012	10.77
4	-0.01334	-0.3436	-0.09353	$0.2200 \pm$	0.1806 i
5(A)	-0.01414	-0.06998	0.06569	0.2565	0.3204
6 (B)	-0.01515	$0.0924 \pm$	$0.2890 \ i$	0.3079	0.6032
7	-0.01516	-1.722	$-0.3324 \pm$	$0.3289 \ i$	0.1328
8	-0.01517	$-0.3\overline{657}$	$0.4340 \pm$	$0.4849 \ i$	1.326

Table: Eigenvalues θ^{I} of the stability matrix for the fixed points with infinite λ .

臣

17/25

イロト イヨト イヨト イヨト

From A to B

Eigen- vector	w_{ϱ}	w_{v_1}	w_{v_2}	w_{v_3}	w_{u_s}
A1	0.0423	-0.0398	5.25×10^{-3}	5.57×10^{-3}	0.998
A2	0	-0.115	-0.224	0.0480	-0.967
<i>B</i> 1	2.19×10^{-5}	-0.999	1.87×10^{-5}	5.69×10^{-6}	0.0162

Table: Eigenvectors of the stability matrix with negative eigenvalues for the fixed points A and B.

First we build the trajectory flowing from point A along the eigenvector A2. Since this vector has zero ρ -part, the trajectory stays in the hyperplane $\rho = 1$.

From B to $\lambda \to 1^+$

Point B has a unique repulsive direction, pointing away from the $\rho = 1$ hyperplane. This gives rise to two RG trajectories, depending on the sign of c_{B1} in the initial conditions.

Figure: The couplings (u_s, v_a) as functions of ρ along the RG trajectory from the fixed point B to $\rho = 0$ $(\lambda \to 1^+)$. Arrows indicate the flow from UV to IR.

イロト イヨト イモト イモ

From B to $\lambda \to 1/3^-$

Point B has a unique repulsive direction, pointing away from the $\rho = 1$ hyperplane. This gives rise to two RG trajectories, depending on the sign of c_{B1} in the initial conditions.

Figure: The couplings (u_s, v_a) as functions of ρ along the RG trajectory from the fixed point B to $\rho = 0$ $(\lambda \to 1/3^{-})$. Arrows indicate the flow from UV to IR.

20/25

(D) (A) (A) (A)

Back to flows from A

We consider a general linear combination of vectors A1 and A2 in the initial condition (27) at the point A

$$c_{A1}w^{A1} + c_{A2}w^{A2} = \cos\varphi_A w^{A1} + \sin\varphi_A w^{A2} , \qquad (29)$$

where $\varphi_A \in [0, 2\pi)$.

The fate of trajectories flowing out from the fixed point A along the linear combination of the repulsive eigenvectors (29) depending on the angle φ_A . Parameter $\delta \sim 2 \times 10^{-3} \varepsilon$

Trajectories emanating from the fixed point A cover the whole range of λ in the unitarity domain:

$$\lambda < 1/3 ~~{\rm or}~~\lambda > 1$$
 .

21/25

From A to $\lambda \to 1^+$ and $\lambda \to 1/3^-$

Figure: RG flows from the fixed point A to $\lambda \to 1^+ (\rho \to 0^+)$.

Figure: RG flows from the fixed point A to $\lambda \to 1/3^- \ (\rho \to \infty)$.

Alexander Kurov

RG flow of 4d pHG

6 September, Moscow

22/25

From A to $\lambda \to 1^+$: the behaviour of \mathcal{G}

Figure: Behaviour of \mathcal{G} as a function of $(\lambda - 1)$ along an RG trajectory connecting the point A to $\lambda \to 1^+$. In regions I, II and III the dependence is well described by the power law $\mathcal{G} \propto (\lambda - 1)^k$ with $k_I = -13.69$, $k_{II} = 3.84$, $k_{III} \approx 0.37$.

In the vicinity of $\lambda = 1$, we obtain the following scalings of the couplings

$$\mathcal{G}|_{\lambda \to 1} \propto (\lambda - 1)^{17/448}, \quad u_s|_{\lambda \to 1} \propto (\lambda - 1)^{241/448}, \quad v_a|_{\lambda \to 1} \propto \frac{1}{\lambda - 1}.$$
(30)

This means that all beta functions diverge when $\lambda \to 1$.

Alexander Kurov

RG flow of 4d pHG

6 September, Moscow

From A to $\lambda \to 1/3^-$: the behaviour of \mathcal{G}

Figure: Behaviour of \mathcal{G} as a function of $(\lambda - 1/3)$ along an RG trajectory connecting the point A to $\lambda \to 1/3^-$. In regions I and II the dependence is well described by the power law $\mathcal{G} \propto (\lambda - 1/3)^k$ with $k_I = -13.69$, $k_{II} = 3.84$.

6 September, Moscow

24/25

- All the fixed points of RG flow were found.
- Trajectories flowing out asymptotically free UV fixed points analyzed. Most of them hit Landau pole.
- It's nontrivial that there exist two families of trajectories which cover the whole range of λ in the unitarity domain.
- In the IR domain, trajectories of one of the families run to the region with λ → 1⁺, i.e. towards GR value of the coupling λ.

25/25

(D) (A) (A) (A) (A)