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Problem statement I

Consider general nonequilibrium �eld theory

S[ϕ] =
1

2

∫
dt
(
ϕ̇TAϕ̇+ ϕ̇TBϕ+ ϕTBT ϕ̇+ ϕTCϕ

)
ϕI � �elds, I = (x, i) � multi-indices, A, B, C � time-dependent

operator coe�cients (A = AIJ(t), . . .).

Field equations read

F = − d

dt
A

d

dt
− d

dt
B +BT d

dt
+ C,

and imply Klein-Gordon type inner product

(ϕ1, ϕ2) = iϕ†1(Wϕ2)− i(Wϕ1)
†ϕ2, W = A

d

dt
+B
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Problem statement II

Goal is to calculate in-in Green's correlation function generating

functional

Z[J1, J2] = tr
[
ÛJ1(T, 0) ρ̂ Û

†
−J2(T, 0)

]
.

where the Hamiltonian was modi�ed by source term −JT (t)ϕ(t).

Density matrix is general Gaussian density matrix, de�nied in

coordinate space

⟨φ+| ρ̂ |φ−⟩ = const× exp

{
−1

2
φTΩφ+ jTφ

}
,

where

φ =

[
φ+

φ−

]
, j =

[
j+
j−

]
, Ω =

[
R S
S∗ R∗

]
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†
−J2(T, 0)

]
.

where the Hamiltonian was modi�ed by source term −JT (t)ϕ(t).

Density matrix is general Gaussian density matrix, de�nied in

coordinate space

⟨φ+| ρ̂ |φ−⟩ = const× exp

{
−1

2
φTΩφ+ jTφ

}
,

where

φ =

[
φ+

φ−

]
, j =

[
j+
j−

]
, Ω =

[
R S
S∗ R∗

]

N. Kolganov Nonequillibrium Schwinger-Keldysh September 6, 2024 3 / 14



Formal result I

Result of functional Gaussian integration reads

Z[J ] = const× exp

{
− i

2

∫ T

0
dt dt′ JT(t)G(t, t′)J(t)

−
∫ T

0
dtJT(t)G(t, 0) j +

i

2
jTG(0, 0) j

}
,

where the source reads

J =

[
J1
J2

]
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Formal result II

Green's function has block-matrix form

G(t, t′) =

[
GT(t, t

′) G<(t, t
′)

G>(t, t
′) GT̄(t, t

′)

]
,

and satisfy inhomogeneous equation

FG(t, t′) = I δ(t− t′),

supplemented by boundary condition

(iW +Ω)G(t, t′)
∣∣
t=0

= 0,

[
I I

]
WG(t, t′)

∣∣
t=T

= 0,[
I −I

]
G(t, t′)

∣∣
t=T

= 0.

where

F =

[
F 0
0 −F

]
, W =

[
W 0
0 −W

]
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Basis functions I

Explicit form of Green's functions can be expressed through basis

functions

Fv±(t) = 0,

(iW +Ω)v−(t)
∣∣
t=0

= 0,

[
I I

]
Wv+(t)

∣∣
t=T

= 0,[
I −I

]
v+(t)

∣∣
t=T

= 0.

We will construct it using the simpler ones

Fv(t) = 0, (iW − ω)v(t)
∣∣
t=0

= 0, ω =

[
ω 0
0 ω∗

]
.

having block-diagonal form

v =

[
v 0
0 v∗

]
, v∗ =

[
v∗ 0
0 v

]
.
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Basis functions II

Desired basis functions are obtained through Bogolyubov

transformation

v+ = v + v∗X =

[
v v∗

v v∗

]
, X =

[
0 I
I 0

]
,

v− = v∗UT − vV T ,

U =
1√
2Ωre

(Ω + ω)
1√
2ωre

,

V =
1√
2Ωre

(Ω − ω∗)
1√
2ωre

.

Answer for G(t, t′) has following �nal form

iG(t, t′) = iG0(t, t
′) + v+(t)ν vT

+(t
′),

iG0(t, t
′) = v+(t)v

†(t′) θ(t− t′) + v∗(t)vT
+(t
′) θ(t′ − t)

ν =
[
I+X−

√
2ωreX (ω+Ω)−1X

√
2ωre

]−1
−X.

which has no �good� block structure.
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Basis functions III

How to choose ω?
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Particle interpretation

Decompose Heisenberg �eld operator

ϕ̂(t) = v(t)â+ v∗(t)â†

de�ne non-anomalous and anomalous averages

ν = tr
[
ρ̂ â†â

]
, κ = tr

[
ρ̂ â â

]
,

Demand κ = 0 which gives equation on ω

ω = R1/2
√
I − σ2R1/2, σ ≡ R−1/2SR−1/2.

Non-anomalous average ν reads

ν =
1

2
κ

(√
I − σ

I + σ
− 1

)
κT , κ ≡

[
ω1/2R−1ω1/2

]1/2
ω−1/2R1/2

Block-matrix components G(t, t′) have simple form, in particular

iG>(t, t
′) = v(t)

(
ν + I

)
v†(t′) + v∗(t) ν vT (t′).
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]
,

Demand κ = 0 which gives equation on ω

ω = R1/2
√

I − σ2R1/2, σ ≡ R−1/2SR−1/2.

Non-anomalous average ν reads

ν =
1

2
κ

(√
I − σ

I + σ
− 1

)
κT , κ ≡

[
ω1/2R−1ω1/2

]1/2
ω−1/2R1/2

Block-matrix components G(t, t′) have simple form, in particular

iG>(t, t
′) = v(t)

(
ν + I

)
v†(t′) + v∗(t) ν vT (t′).

N. Kolganov Nonequillibrium Schwinger-Keldysh September 6, 2024 9 / 14



Particle interpretation

Decompose Heisenberg �eld operator

ϕ̂(t) = v(t)â+ v∗(t)â†
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Euclidean density matrix I

Consider the particular type of the density matrix, de�ned by the

Euclidean action

ρE(φ+, φ−; JE ] =
1

Z

∫
ϕ(τ±)=φ±

Dϕ exp

{
−SE [ϕ]−

∫ β

0
dτ JE(τ)ϕ(τ)

}
,

where SE is Euclidean action

iS[ϕ(t)]
∣∣
t=−iτ = −SE [ϕE(τ)].

Operator coe�cients of the Euclidean action are de�ned by the initial

one as

AE(τ) = A(−iτ), BE(τ) = −iB(−iτ), CE(τ) = −C(−iτ),

and hermiticity implies

AE(β − τ) = A∗E(τ), BE(β − τ) = −B∗E(τ), CE(β − τ) = C∗E(τ)
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Euclidean density matrix II

This arise in the context of spatially closed cosmology

Σ− Σ+

Density matrix is Gaussian, which parameters read

Ω =

[
−
→
WEGD(β, β)

←
WE

→
WEGD(β, 0)

←
WE

→
WEGD(0, β)

←
WE −

→
WEGD(0, 0)

←
WE

]
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Euclidean density matrix III

Special choice of ω implies following properties of basis functions

v(t− iβ) = v(t)
ν + I

ν
, v∗(t− iβ) = v∗(t)

ν

ν + I
.

that lead do famous Kubo-Martin-Schwinger condition

G>(t− iβ, t′) = G<(t, t
′)

despite non-stationary nature of system!
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Èòîãè

Generating functional of in-in Green's functions for general

non-equilibrium system and initial state was calculated

Special choice of basis functions, allowing particle interpretation was

made

For Euclidean initial state analytic structure of basis functions was

examined and KMS condition was derived

N. Kolganov Nonequillibrium Schwinger-Keldysh September 6, 2024 13 / 14



Thank you for your attention!

N. Kolganov Nonequillibrium Schwinger-Keldysh September 6, 2024 14 / 14


