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Introduction

Classical solutions of Einstein equation
Spacetime isometries and dimensional reduction
Stationary 4D spacetimes and 3D sigma-models on cosets G/H
Target space isometries. Harrison transformations and Ehlers group
Maximal N = 8 sugra and G=SO(4,4) as generating symmetry.
Constructing sugra black holes from Kerr. Type I from type D.
Stationary axisymmetric spacetimes (SAS) and 2D integrable systems
– indirect way to solve Einstein equations
Hidden symmetries: Killing tensors, separability of Hamilton-Jacoby
and Klein-Gordon equations
Carter’s vacuum and electrovacuum spacetimes (1968) admitting
direct separation of Einstein equations (Petrov type D)
Generalisation to supergravity: to find ansatz ensuring separability of
Einstein equations for Petrov type I and sugra matter sources
(multiple vector and scalar fields)
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Generic model

General bosonic part of extended 4d sugras is

S=

∫
d4x

[(
R − 1

2
fAB∂µΨ

A∂µΨB − 1

2
KIJF

I
µνF

Jµν

)√
−g−1

2
HIJF

I
µνF

J
λτ ϵ

µνλτ

]
The scalar moduli parametrize a four-dimensional coset (e.g. U(8)/E7(7)

for N = 8,D = 4 supergravity) with an associated target metric fAB(Ψ).
Vector fields transform under the same global symmetry implemented by
real symmetric matrices KIJ , HIJ depending on scalar fields ΨA

The corresponding Einstein equations read:

Rµν =
1

2
fABΨ

A
,µΨ

B
,ν − KIJ

(
F I
µλF

Jλ
ν +

1

4
gµνF

I
αβF

Jαβ

)
The scalar fields depend only on r , y , so they contribute directly only in
transverse part of the Ricci tensor.
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Stationary spacetime

Stationary metric in Kaluza-Klein form

ds2 = f (dt − ωidx
i )2 − f −1hijdx

idx j ,

The equations reduce to those of the three-dimensional gravitating
sigma-model for nσ = 2 + 2nv + ns scalars, gr-qc 2405.19196,
XM = f , χ,ΨA, v

I , uI , M = 1, . . . , nσ and the three-dimensional
metric hij :

S3 =

∫ [
R(h)− GMN(X ) ∂iX

M ∂jX
N hij

]√
h d3x ,

where target space is a coset G/H, in particular, G = SO(4, 4, ) for
maximal 4d sugra. Using Harrison transformations from G one can
generate sugra black holes from Kerr metric.
This is indirect way to solve Einstein equations. It involves
non-point-like transformations.
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Stationary axisymmetric spacetime (SAS)

Second way. Assuming in addition an axial symmetry, commuting with
stationarity –> Lewis-Papapetrou form (two blocks)

ds2 = γab(ρ, z)dx
adxb + e2ν(dρ2 + dz2) ,

which leads to two-dimensional integrable systems. This is also an
indirect way to solve Einstein equations, rather complicated.
The third way: separation of variables in the Einstein equations of the
SAS vacuum and electrovacuum was demonstrated by Carter (1968),
who assumed the additional existence of a second-rank Killing tensor.
In particular, he obtained Kerr-Newman metric of Petrov type D,
ensuring stronger Killing-Yano hidden symmetry.
Can one generalize this method to supergravity?
Observation: sugra black holes metrics obtained by the first and the
second methods are of Petrov type I, but they still possess second
rank Killing tensor.
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Killing tensor

Killing tensor is a symmetric tensor satisfying ∇(αKµν) = 0 which provides
an additional integral

C =
∂S

∂xµ
∂S

∂xν
Kµν

for the Hamilton-Jacobi (HJ) equation

∂S

∂xµ
∂S

∂xν
gµν = µ2

Benenti theorem (1976):
In n dimensions a necessary and sufficient condition for separability of
HJ equation is the existence of a closed commuting system of
Schouten-Nijenhuis brackets of n Killing vectors and Killing tensors,
with additional conditions for eigenvectors of the latter.
For SAS 4-dim spacetime one (trivial) Killing tensor is the metric, so
one nontrivial is needed for HJ separability
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Benenti-Francaviglia ansatz
Metric parametrization ensuring existence of non-trivial Killing tensor was
given by Benenti and Francaviglia (BF, 1979). It includes ten arbitrary
functions, each depending on one variable Ak(r), Bk(y), k = 1..5 .

Metric is SAS, block diagonal (orthogonal transitivity), xµ = (xa, x i ),
where xa = t, φ correspond to the subspace spanned by the Killing
vectors K (t) = ∂t and K (φ) = ∂φ and x i = r , y , belong to orthogonal
two-dimensional space whose metric without loss of generality can be
assumed diagonal. BF ansatz initially is written in terms of the
contravariant metric tensor gµν =

(
gab, g ij

)
:

gab = Σ−1

(
A3 − B3 A4 − B4

A4 − B4 A5 − B5

)
, g ij = −Σ−1

(
A2 0
0 B2

)
In order to ensure existence of an exact Killing tensor (EKT), the
conformal factor Σ = Σ(r , y) must be of the special form

Σ = A1 + B1.
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BF Killing tensor

In terms of A, B, the BF Killing tensor reads Kµν =
(
K ab, K ij

)
, where

ΣK ab =

(
A1B3 + A3B1 A1B4 + A4B1

A1B4 + A4B1 A1B5 + A5B1

)
, ΣK ij =

(
−A2B1 0

0 A1B2

)
The inverse metric and the Killing tensor have the following automorphism:

A1 ↔ −B1, Ai ↔ Bi , (i = 2..4), g rr ↔ −g yy , K rr ↔ −K yy .

For an arbitrary conformal factor Σ only a conformal Killing tensor exists.
Two blocks of the covariant metric tensor gµν = (gab, gij): read

gab =
Σ

P

(
A5 − B5 −A4 + B4

−A4 + B4 A3 − B3

)
, gij = −Σ

(
A−1
2 0

0 B−1
2

)
where

P = (A3 − B3)(A5 − B5)− (A4 − B4)
2.
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Null shear-free congruences

By Goldberg-Sachs theorem, a vacuum spacetime is algebraically
special if and only if it admits null geodesic shear-free congruence.
This means that the corresponding principal null direction of the Weyl
tensor is degenerate. If there are two such congruences, the metric is
of type D.
Type D guarantees existence of the second rank Killing tensor, and,
moreover, Killing-Yano tensor
For some supergravity black holes existence of null shear-free geodesic
congruences was demonstrated, while metric type is I. There is no
contradiction witgh GS theorem, since solutions are non-vacuum.
Moreover, second rank Killing tensor also exists, though only in
absence of scalar fields the black hole solution are type D.
To clarify relationship between null geodesis shear-free congruences,
Killing tensors and Petrov types we proceed with the Newman-Penrose
description of BF spacetimes.
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Newman-Penrose formalism

gµν = lµnν + nµlν −mµm̄ν − m̄µmν ,

We choose some natural Newman-Penrose (NP) null tetrad :

l = 1/
√
2Σ
(√

A3 ∂t+C ∂φ−
√
A2 ∂r

)
, m = 1/

√
2Σ
(√

B3 ∂t+D ∂φ−i
√
B2 ∂y

)
,

n = 1/
√
2Σ
(√

A3 ∂t+C ∂φ+
√
A2 ∂r

)
, m̄ = 1/

√
2Σ
(√

B3 ∂t+D ∂φ+i
√
B2 ∂y

)
.

(A3−B3)C=
√
A3(A4−B4)+

√
B3

√
−P,

(A3−B3)D=
√
B3(A4−B4)+

√
A3

√
−P.

Using algebraic computing and hints from the known supergravity black
hole solutions, one is led to consider the following constraints excluding two
of ten BF functions:

A4 =
√
A3A5, B4 =

√
B3B5. Then

√
−P =

√
A3B5 −

√
A5B3, ⇒ C =

√
A5, D =

√
B5.
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Recall the definitions of the NP projections of the covariant derivatives

D = lµ∇µ, ∆ = nµ∇µ, δ = mµ∇µ, δ̄ = m̄µ∇µ,

and the action of D,∆ on the vectors lµ, nµ

Dlµ = (ϵ+ ϵ̄)lµ − κ̄mµ − κm̄µ

∆nµ = −(γ + γ̄)nµ + νmµ + ν̄m̄µ.

Consider null congruences aligned with lµ, nµ. If κ = 0 = ν they are
geodesic, with ϵ, γ being measure of non-affinity. Another important
quantity of null congruences is shear, which is defined for them as

σ = −mµδ lµ, λ̄ = mµδ nµ

respectively. Calculating the spin coefficients for our tetrad, we find:

κ = ν = 0, σ = λ = 0,

which means that both congruences are geodesic and shearfree. Other spin
coefficients are generically non-zero and pairwise equal:

µ = ρ, τ = π, ϵ = γ, α = β.
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Such properties are typical for Petrov type D. To establish Petrov type in
our case, we calculate the NP projections of the Weyl tensor:

Ψ0 = −Cαβγδ l
αmβ lγmδ,

Ψ1 = −Cαβγδ l
αnβ lγmδ,

Ψ2 = −Cαβγδ

(
lαnβ lγnδ − lαnβmγm̄δ

)
/2,

Ψ3 = −Cαβγδn
αlβnγmδ,

Ψ4 = −Cαβγδn
αm̄βnγm̄δ,

From the computer assisted calculations one finds that two are zero,

Ψ0 = 0 = Ψ4,

while the others are rather cumbersome in terms of BF coefficients. Still
one can extract the following relation between the other two:

Ψ1 = Ψ3,

reflecting obvious symmetry of the tetrad under A ↔ B .
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Vanishing of Ψ0 and Ψ4 means that the real vectors lµ, nµ are two distinct
principal null directions of the constrained BF metric. Also this means that
our tetrad is not canonical for determination of the Petrov type. We
therefore proceed by computing the values of the quadratic and cubic
curvature invariants of the Weyl tensor

I = Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2, J =

∣∣∣∣∣∣
Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

∣∣∣∣∣∣ .
As is known, in order for a metric to be algebraically special, the following
relationship between invariants must be satisfied:

I 3 = 27J2.

With our results one finds that the constrained BF metrics are algebraically
special if

Ψ2
1 = kΨ2

2, with k = 9/16, or 0.
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Petrov types

If this does not hold, the metric is of the Petrov type I.
If holds with k = 0 and Ψ2 ̸= 0 then the metric type is D.
Other algebraically special types are not possible , for example if one
assumes type II, for which Ψ0 = 0 = Ψ1, one immediately finds that
the Weyl tensor completely vanishes, i.e. the metric is of type O.
In view of the Goldberg-Sachs theorem, for type I spacetime,
admitting a null geodesic shear-free congruence, the Ricci tensor
should be non-zero. This is the case for supergravity black holes.
Thus our class IB (eight A, B functions) consists of non-vacuum
metrics, admitting a Killing tensor and a pair of null geodesic
shear-free congruences. These properties are close to properties of D
type, they will ensure separability of the Hamilton-Jacobi equation.
Special feature of type IB is that its algebraically special subsector is
only type D
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Klein-Gordon separability
Generic type IB class of metrics still does not quarantee separability of the
wave equations. Consider the Klein-Gordon equation for a real scalar field ϕ:

□ϕ =
1√
−g

∂µ
(√

−ggµν∂νϕ
)
= −µ2ϕ.

Crucial for separability is the determinant of the metric, which with the
first two constraints reads:

√
−g =

Σ2

√
A2B2

(√
A3B5 −

√
A5B3

) .
Consideration of the inverse metric clearly shows that the separability
condition is √

−g = Σ.

This leads to the third restriction on the Benenti coefficient functions:

Σ =
√

A2B2

(√
A3B5 −

√
B3A5

)
,

which can be rewritten as A1 + B1 = bA23 − aB23, introducing
A23 =

√
A2A3, B23 =

√
B2B3 in the gauge A2A5 = a2, B2B5 = b2 (const).
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Differentiating this with respect to the appropriate arguments, one can find
useful differential relations following from the third constraint:

A′
1 = bA′

23, B ′
1 = aB ′

23.

(Note, that in these relations primes can not be omitted!)
With the third constraint the separability of KG equation is easily shown:

with ϕ(xµ) = e−iωt+imφR(r)Y (y), one gets :

((A2)
′R)′

R
+

((B2)
′Y )′

Y
+ U(r)− V (y) = 0,

where primes denote derivatives with respect to r , y , and

U(r) = (ω
√

A3 −m
√
A5)

2 − µ2A1,

V (y) = (ω
√

B3 −m
√

B5)
2 + µ2B1.

This second constraint effectively reduces the number of arbitrary functions
to seven, two of which A2,B2 can still be fixed using gauge freedom, so the
number of essentially independent functions is five.
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Carter’s operator and commutativity
Klein-Gordon separability can be also explored with the help of Carter’s
second order differential operator associated with the Killing tensor:

K̂ = ∇µK
µν∇ν ,

which must commute with D’Alembert operator. This commutator was
elaborated by Carter:

[□, K̂ ]ϕ =
4

3
∇α(Kσ

[αRβ]σ)∇β ϕ.

Projecting tensor at the right hand side onto the NP tetrad, we obtain

Kσ
[αRβ]σ = 2(Kln + Kmm̄)(n

β(m̄αΦ01 +mαΦ10)− nα(m̄βΦ01 +mβΦ10)+

+ (lβm̄α − lαm̄β)Φ12 + (lβmα − lαmβ)Φ21).

So a sufficient condition for commutativity is vanishing of two Ricci scalars

Φ01 = Rµν l
µmν/2 = Φ10, Φ12 = Rµνn

µmν/2 = Φ21.
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Computing them with account for the third constraint and equating to zero
one obtains:

aA′′
23 − bB ′′

23 = 0,

where primes denotes derivatives over respective arguments. With account
for previously found relations, this can be also rewritten as

a2A′′
1 − b2B ′′

1 = 0.

Since one term is a function of r , while the other is a function of y , each of
them must be constant. Other speaking A1 and B1 must be at most
quadratic polynoms of respective arguments.
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Separability of Einstein equations

After imposing three constraints on BF functions we can rewrite the
spacetime metric as follows

ds2=
A2B2

Σ

(√
B5dt−

√
B3dφ

)2
−A2B2

Σ

(√
A5dt−

√
A3dφ

)2
−Σ

A2
dr2−Σ

B2
dy2,

where
Σ =

√
A2B2(

√
A3B5 −

√
A5B3).

This is exactly Carter’s ansatz of 1968 up to a signature convention and
notation. Carter showed that for these metrics the vacuum and
electrovacuum (with the corresponding Maxwell form) Einstein equations
are separable and lead to several families of solutions, among which were
the Kerr and Kerr-Newman black holes belonging to the Petrov type D.
Now we checked that our parameterization admits class IB of general type I
and thus is applicable to supergravity. Preliminary analysis shows that
generic supargravity equations can be separated for type IB indeed.
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Killing-Yano and type D
The Killing-Yano tensor Yµν = −Yνµ satisfying the equation

∇(αYµ)ν = 0,

can be regarded as a “square root” of the Killing tensor:

Yµ
αYαν = Kµν .

Since we know the Killing tensor independently of Petrov type of the
metric, we may consider these equations as independent conditions which
prescribe the metric to be of type D, and define the KY tensor itself.
In terms of the constrained tetrad the Killing tensor has only two
non-vanishing NP projections exactly as in the case of the type D :

Kln = B1, Kmm̄ = A1.

So projecting KJ splitting of KT on the NP tetrad, one obtains:

Y 2
ln = B1, Y 2

mm̄ = −A1,
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Extracting roots from these equations is somewhat subtle and demands
further analysis. The result is

Yln =
√
B1, Ymm̄ = −i

√
A1.

Now we have to satisfy the KY equation for consistency . Omitting details
we arrive at the following relation for the metric to be D type:

A′
1 = 2b

√
A1, B ′

1 = 2a
√
B1;

A′
23 = 2

√
A1, B ′

23 = −2
√
B1.

Intergration of this system provides generic form for some of the metric
coefficients for type D BF sector:

A1 = (br + c1)
2, B1 = (ay + d1)

2,

A23 = br2 + 2 c1r + c2, B23 = −(ay2 + 2 d1y + d2),

where the constants c1, d1, c2 and d2 are subject to the following
condition:

b c2 + a d2 = c1
2 + d1

2. (1)
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It remains to check that with these conditions the Weyl tensor projections
Ψ1,3 vanish. Taking into account three constraints, Ψ1,3 can be obtained in
the form

8Σ3Ψ1,3 = −
√

A2B2

{
Σ(aA′′

23 − bB ′′
23)− ab(A′

23
2 + B ′

23
2)
}
,

Substituting here subsidiary conditions for type D obtained above, one finds
that Ψ1,3 = 0 indeed.

Also note that in the static case, when A5 = 0 = B3, and hence
a = 0, B23 = 0, we have Ψ1,3 = 0 for the full class IB without imposing a
condition of type D.
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Kerr-Newman
Kerr-Newman metric is type D solution on N = 2 pure supergravity
without scalar fields. In Boyer-Lindquist coordinates,

ds2=
∆r

Σ
(dt−a sin2 θdφ)2−1

Σ
sin2θ(adt−(r2+a2)dφ)2− Σ

∆r
dr2−Σ dθ2,

∆r = r2 − 2Mr + a2 + Q2, Σ = r2 + a2 cos θ.

In BF form one obtains:

A1 = r2, B1 = a2y2

A3 =
(r2 + a2)2

∆r
, B3 = a2(1− y2),

A5 =
a2

A2
=

a2

∆r
, B5 =

1

B2
=

1

1− y2
,

where y = cos θ. It is easy to verify that our conditions are met:

A2
4 = A3A5, B2

4 = B3B5, b = 1, A1+B1 =
√
A2B2

(√
A3B5 −

√
A5B3

)
,

as well as the type D conditions.
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N = 4 EMDA1solution

ds2 =
∆r − a2 sin2 θ

Σ
(dt − wdφ)2 − Σ

(
dr2

∆r
+ dθ2 +

∆r sin
2 θ

∆r − a2 sin2 θ
dφ2

)
,

∆r = (r − r0)(r − 2M) + a2 − (N − N−)
2,

Σ = r(r − r−) + (a cos θ + N)2 − N2
−,

w =
2

a2 sin2 θ −∆r

[
N∆r cos θ + a sin2 θ(M(r − r−) + N(N − N−))

]
,

r− =
M|Q − iP|2

|M + iN|2
, N− =

N|Q − iP|2

2|M + iN|2
, Its BF form reads:

A1 = r(r − r−), B1 = (a y + N)2 − N2
−,

A3 =

(
r(r − r−) + a2 + N2 − N2

−
)2

∆r
, B3 =

[
a(1− y2)− 2Ny

]2
1− y2

,

A5 =
a2

A2
=

a2

∆r
, B5 =

1

B2
=

1

1− y2
,

A2
4 = A3A5, B2

4 = B3B5, a = a, b = 1, A1 + B1 =
√
A2B2

(√
A3B5 −

√
A5B3

)
,
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Two non-zero NP projections of the Killing tensor are

Kln = (ay + N)2 − N2
−, Kmm̄ = r(r − r−).

The metric is a non-vacuum Petrov type IB solution, with the following set of
non-zero Weyl scalars:

Ψ1 = Ψ3 =
a(4N2

− + r2−) sin θ
√
∆r

8Σ3
, 12Σ3Ψ2 =

− 12(M − iN)(r + i(a cos θ + N))3 + 6NN−
(
2(r + i(N + a cos θ))− r−

)2
+

+ r3−(8M − r) + 8NN3
− − 4N4

− − 6ar− cos θ(5M − 3iN)(a cos θ + 2N − 2ir)+

+ 2r−
(
M
(
15(r + iN)2 + 7N2

−
)
+ 18N2r + 9iN3 + 3iN

(
N2

− − 3r2
)
− 2N2

−r
)
+

+ 4N2
−
(
2a2−a cos θ(3i(M + iN) + a cos θ)− 5Mr + 2N2 − 3iN(M + r)

)
+

+ 4N2
−r

2 + r2−
(
2a2 − 24iMN − 7N2 + 2NN− − N2

−
)
−

− r2−
(
a cos θ(6i(4M − iN) + a cos θ) + 26Mr − 6iNr − r2

)
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N = 8 STU

ds2 =
∆r − a2 sin2 θ

Σ
(dt − wdφ)2 − Σ

(
dr2

∆r
+ dθ2 +

∆r sin
2 θ

∆r − a2 sin2 θ
dφ2

)
,

∆r = r2 − 2Mr + a2,

w = − 2Maω sin2 θ

∆r − a2 sin2 θ
, ω = ((Πc − Πs)r + 2MΠs),

Σ2 =
4∏

I=0

(r + 2Ms2I ) + a4 cos4 θ+

+ 2a2 cos2 θ

(
r2 +Mr

3∑
I=0

s2I + 4M2(Πc − Πs)Πs − 2M2
3∑

I<J<K

s2I s
2
J s

2
K

)
,

and the products of charges are defined as follows

Πs =
3∏

i=0

sI =
3∏

I=0

sinh δI , Πc =
3∏

I=0

√
1 + s2I =

3∏
I=0

cosh δI , s2I = sinh2 δI .
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In the case of pairwise equality of charges s1 = s3 = S1, s2 = s4 = S2, we deal
with the so-called two-charge solution. If S2 = 0, then the metric reduces to the
Kerr-Sen solution. It is possible to transform the metric to the BF form only for
the case of two-charge solution, for which

Σ2ch = r2 + a2 cos2 θ + 2Mr(S2
1 + S2

2 ) + 4M2S2
1S2

2 =

= r2 − 2Mr + a2 cos2 θ + 2Mw2ch

A1 = r2 − 2Mr + 2Mw2ch, B1 = a2y2,

A3 =
(r2 − 2Mr + a2 + 2Mw2ch)

2

∆r
, B3 = a2(1− y2),

A5 =
a2

A2
=

a2

∆r
, B5 =

1

B2
=

1

(1− y2)
.

Ψ1 = Ψ3 =
aM2 sin θ(S2

1 − S2
2 )

2
√
∆r

2Σ3
2ch

,

3Σ3
2ch

M
Ψ2 = 12M2S2

1S2
2 (M − r − ia cos θ)(S2

1 + S2
2 )−

− 3(r + ia cos θ)3 − 3(r + ia cos θ)2(M + r + ia cos θ)(S2
1 + S2

2 )−
− 2M(r2 + 2Mr − a2 + 3iar cos θ + a2y2)(S4

1 + S4
2 )+

+ 4MS2
1S2

2 (5a
2 cos2 θ − a2 + 4Mr − 5r2 + 3iaM cos θ − 9iar cos θ)
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Conclusions

A parameterization of the metric admitting:
two commuting Killing vectors,
a second rank non-trivial Killing tensor,
two null geodesic shear-free congruences,
ensuring separability of the Klein-Gordon equation

is found starting with Benenti-Francaviglia ansatz.
The corresponding Petrov types are determined:

a sector IB inside type I such that
its algebraically special subclass is only type D

Compatibility with black hole solutions in extended four-dimensional
supergravities is shown
Separability of supergravity bosonic equations for the above class of
metrics is conjectured
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