Set up	Harmonic space	Λ formalism	Differential equation for banana diagram	PF for SH
00	000000	OO	0000	00000

Banana diagrams as functions of geodesic distance

Based on: arXiv:2408.15724 D. Diakonov and A. Morozov. Banana diagrams as functions of geodesic distance

Efim Fradkin Centennial Conference

Set up ●0	Harmonic space 000000	Λ formalism OO	Differential equation for banana diagram 0000	PF for SH 00000
Set up				

- It is well known that Feynman diagrams in Minkowski space-time satisfy differential equations.
- Studying these differential equations provides information about the analytical structure of Feynman diagrams.

For example, for the banana diagram:

 \blacksquare The position space differential equation for $G^2(x)$ is given by:

$$\left[x^{\mu}\partial_{\mu}\left(\Box+4m^{2}\right)+\left(2d-2\right)\left(\Box+2m^{2}\right)\right]G^{2}(x)=0, \quad \text{for} \quad x>0.$$

$$(1)$$

■ The momentum space differential equation for

$$G^{2}(p) = \int d\alpha_{1} d\alpha_{2} \delta(1 - \alpha_{1} - \alpha_{2}) \frac{(\alpha_{1} + \alpha_{2})^{2-d}}{[\alpha_{1} \alpha_{2} \ p^{2} - m^{2}(\alpha_{1} + \alpha_{2})^{2}]^{\frac{4-d}{2}}},$$
(2)

satisfies Picard-Fuchs equations:

$$\left[p^{2}(p^{2}-4m^{2})\partial_{p^{2}}-(d-4)p^{2}-4m^{2}\right]G^{2}(p)=0.$$
(3)

■ Can we generalize these approaches to curved space?

Set up	Harmonic space		Differential equation for banana diagram	PF for SH
00	000000	00	0000	00000

- To construct coordinate differential equations we should know how the 2^{nd} derivatives of the Green function can be expressed in terms of 1^{st} and 0^{th} derivatives.
- For example, in the general case we don't know how to do that:

$$\nabla_{\mu} \nabla_{\nu} G(x, y) = ???. \tag{4}$$

However, if the Green function is a function of the geodesic distance, then:

$$\nabla_{\mu} \nabla_{\nu} G(\sigma) = G'(\sigma) \nabla_{\mu} \nabla_{\nu} \sigma + G''(\sigma) \nabla_{\mu} \sigma \nabla_{\nu} \sigma.$$
 (5)

Then from the Klein-Gordon equation:

$$\left(\triangle - m^2\right)G(\sigma) = G''(\sigma)\nabla_\mu\sigma\nabla^\mu\sigma + G'(\sigma)\Delta\sigma - m^2G(\sigma) = 0, \qquad (6)$$

and the fact that the vector $\nabla_{\mu}\sigma$ has unit length: $\nabla_{\mu}\sigma\nabla^{\mu}\sigma = 1$, we can obtain:

$$\nabla_{\mu} \nabla_{\nu} G(\sigma) = G'(\sigma) \nabla_{\mu} \nabla_{\nu} \sigma - \left(G'(\sigma) \bigtriangleup \sigma - m^2 G(\sigma)\right) \nabla_{\mu} \sigma \nabla_{\nu} \sigma.$$
(7)

• The Green function is a function of geodesic distance if:

$$\Delta \sigma = p(\sigma) \rightarrow \text{Coulomb's law depend on geodesic distance}$$
(8)

Set up	Harmonic space	∧ formalism	Differential equation for banana diagram	PF for SH
00	•00000	00	0000	00000

Harmonic space

Set up 00	Harmonic space 000000	Λ formalism OO	Differential equation for banana diagram 0000	PF for SH 00000

Harmonic space

The definition of harmonic spaces is that the Laplacian of the geodesic distance in these spaces is a function of the geodesic distance:

$$\Delta \sigma = \rho(\sigma).$$
 (9)

One of the key properties of harmonic spaces is that they are Einsteinian:

$$\mathbf{R}_{\mu\nu} = \kappa \mathbf{g}_{\mu\nu}.\tag{10}$$

The classification of harmonic spaces is not yet complete, and not all such spaces are known. A short list of harmonic spaces:

- Any space covered by \mathbb{R}^n
- Maximally symmetric space Sⁿ
- Real projective space RPⁿ
- Complex projective space $\mathbb{C}P^n$
- Quaternionic projective space $\mathbb{H}P^n$
- Cayley projective plane $\mathbb{O}P^2$
- Complex Grassmannian $\mathbb{GR}(k, n)$

Set up 00	Harmonic space 000000	∧ formalism 00	Differential equation for banana diagram 0000	PF for SH 00000
Simple	e harmonic space	ce		

Among harmonic spaces, there is a specific category known as simple harmonic spaces (SH), for which the Laplacian of the geodesic distance appears the same as in d-dimensional flat space:

$$\Delta \sigma = (d-1)\sigma^{-1} \ . \tag{11}$$

• As an example of a simple harmonic space, one can consider the following space:

$$ds^{2} = (x^{2}dx^{1} - x^{1}dx^{2})^{2} + 2dx^{1}dx^{3} + 2dx^{2}dx^{4}.$$
 (12)

This space is Ricci flat $(R_{\mu\nu} = 0)$, but it has a non-zero component of the curvature tensor $(R_{1212} = -3)$. The geodesic distance has a form similar to the geodesic distance in Euclidean space:

$$\sigma(x, y) = \sqrt{(y_1 x_2 - y_2 x_1)^2 + 2(x_1 - y_1)(x_3 - y_3) + 2(x_2 - y_2)(x_4 - y_4)} = (13)$$
$$= \sqrt{g_{\mu\nu}(x^{\mu} - y^{\mu})(x^{\nu} - y^{\nu})},$$

satisfying relation (11).

Set up 00	Harmonic space 000000	∧ formalism 00	Differential equation for banana diagram 0000	PF for SH 00000

Maximally Symmetric Space

Maximally symmetric spaces have the following embedding:

$$z^{2} + \eta_{\mu\nu} x^{\mu} x^{\nu} = r^{2} \tag{14}$$

into a d+1 dimensional space with general signature $\eta_{\mu\nu} = \text{diag}(\pm 1, \pm 1, \dots, \pm 1)$. The metric is given by:

$$g_{\mu\nu} = \eta_{\mu\nu} + \frac{x^{\alpha} x^{\beta} \eta_{\alpha\mu} \eta_{\beta\nu}}{r^2 - \eta_{\mu\nu} x^{\mu} x^{\nu}}.$$
 (15)

■ The geodesic distance is defined by the angle between two points:

$$\sigma = r \arccos\left(\frac{z}{r}\right) = r \arccos\left(\frac{\sqrt{r^2 - \eta_{\mu\nu} x^{\mu} x^{\nu}}}{r}\right).$$
(16)

• The Laplacian of the geodesic distance is a function of the geodesic distance:

$$\Delta \sigma = (d-1)\frac{1}{r}\cot\left(\frac{\sigma}{r}\right). \tag{17}$$

Set up 00	Harmonic space 000000	Λ formalism 00	Differential equation for banana diagram 0000	PF for SH 00000
n m				

The geodesic distance on \mathbb{CP}^n is given by the Hermitian angle:

$$\sigma = \arccos\left(\sqrt{\frac{(1+z\cdot\bar{w})(1+\bar{z}\cdot w)}{(1+z\cdot\bar{z})(1+\bar{w}\cdot w)}}\right),\tag{18}$$

where $z_i=\frac{Z^i}{Z^0}$ are the affine coordinates.

■ The Fubini-Study metric has a Kähler form:

$$g_{\mu\bar{\nu}} = \partial_{\mu}\bar{\partial}_{\bar{\nu}}\log\left(1 + z \cdot \bar{z}\right). \tag{19}$$

The Laplacian is given by:

$$\Delta = 2g^{\mu\bar{\nu}}\partial_{\mu}\bar{\partial}_{\bar{\nu}}.$$
 (20)

From the following relation:

$$2\log(\cos(\sigma)) = \log(1 + z \cdot \overline{w}) + \log(1 + \overline{z} \cdot w) - \log(1 + z \cdot \overline{z}) - \log(1 + \overline{w} \cdot w)$$
(21)

we can obtain:

$$\Delta 2\log(\cos(\sigma)) = -2g^{\mu\bar{\nu}}\partial_{\mu}\bar{\partial}_{\bar{\nu}}\log(1+z\cdot\bar{z}) = -2\dim[\mathbb{CP}^n].$$
(22)

■ Hence, complex projective space is harmonic:

$$\Delta \sigma = \left(\dim[\mathbb{CP}^n] - 1 \right) \cot(\sigma) - \tan(\sigma) \, . \tag{23}$$

Set up 00	Harmonic space 00000●	Λ formalism 00	Differential equation for banana diagram 0000	PF for SH 00000

Grassmannian

■ The Grassmannian $\mathbb{GR}(k, n)$ is a natural generalization of \mathbb{CP}^n , with the points labeling the k-planes. The Grassmannian can be parameterized by Pontrjagin coordinates $(Z_{ia}, \overline{Z}_{ia})$, where the geodesic distance is given by:

$$\cos(\sigma) = \sqrt{\frac{\det\left(1_{ab} + Z_{ia}\bar{W}_{ib}\right)\det\left(1_{ab} + \bar{Z}_{ia}W_{ib}\right)}{\det\left(1_{ab} + Z_{ia}\bar{Z}_{ib}\right)\det\left(1_{ab} + W_{ia}\bar{W}_{ib}\right)}}.$$
(24)

■ The metric has a Kähler form:

$$ds^{2} = \log \det \left(1_{ab} + Z_{ia}\bar{Z}_{ib} \right) =$$

$$= \operatorname{Tr} \left[\left(1 + Z\bar{Z} \right)^{-1} dZ d\bar{Z} - \left(1 + Z\bar{Z} \right)^{-1} Z d\bar{Z} (1 + Z\bar{Z})^{-1} dZ \bar{Z} \right].$$

$$(25)$$

The Laplacian has a simple form:

$$\Delta = 2g^{(ia)} \,_{(\bar{j}\bar{b})} \partial_{ia} \bar{\partial}_{\bar{j}\bar{b}}. \tag{26}$$

The Laplacian of the geodesic distance can be obtained from the relation:

$$\Delta 2 \log(\cos(\sigma)) = -2g^{(ia)} (\bar{b}) \partial_{ia} \bar{\partial}_{\bar{j}b} \log \det\left(1_{ab} + Z_{ia} \bar{Z}_{ib}\right) = -2 \dim\left[\mathbb{GR}(k, n)\right].$$
(27)

Hence, the complex Grassmannian manifold is harmonic:

$$\Delta \sigma = (\dim [\mathbb{GR}(k, n)] - 1) \cot(\sigma) - \tan(\sigma)$$
 (28)

Set up	Harmonic space	Λ formalism	Differential equation for banana diagram	PF for SH
00	000000	●0	0000	00000

Λ formalism

Set up	Harmonic space	∧ formalism	Differential equation for banana diagram	PF for SH
00	000000	0●	0000	00000

Λ formalism

■ Let us introduce the following linear differential operator:

$$\Lambda = f(\sigma)\partial_{\sigma}$$
. (29)

The function f will be defined below. Then using the following relation:

$$\Lambda^2 G = ff'G' + f^2 G'', \qquad (30)$$

one can rewrite the Klein-Gordon equation in terms of Λ as follows:

$$\Lambda^2 G - \left[f' - (\Delta \sigma) f \right] \Lambda G - (m^2 + \xi R) f^2 G = 0.$$
(31)

• We can choose f to cancel the linear term in Λ in the last equation:

$$f' = (\Delta \sigma)f = p(\sigma)f \implies f = e^{\int d\sigma \, \Delta \sigma}.$$
(32)

• Therefore, the differential equation can be written in a simple form:

$$\left(\Lambda^2 - \lambda^2\right) G(\sigma) = 0 \qquad \text{and} \qquad \lambda = \sqrt{m^2 + \xi R} e^{\int d\sigma \, \Delta \sigma} \,. \tag{33}$$

M	$\dim(\mathbb{M})$	$\Delta \sigma$ or $p(\sigma)$	$f(\sigma)$
SHn	п	$(n-1)\sigma^{-1}$	σ^{n-1}
$\mathbb{S}^n, \mathbb{RP}^n$	п	$(n-1)$ ctg (σ)	$sin^{n-1}(\sigma)$
\mathbb{CP}^n	2 <i>n</i>	$(2n-1)$ ctg (σ) – tg (σ)	$\sin^{2n-1}(\sigma)\cos(\sigma)$
$\mathbb{GR}(k,n)$	$\dim = 2k(n-k)$	$(\dim -1) \operatorname{ctg}(\sigma) - \operatorname{tg}(\sigma)$	$\sin^{\dim -1}(\sigma)\cos(\sigma)$
\mathbb{HP}^n	4 <i>n</i>	$(4n-1)$ ctg (σ) – 3tg (σ)	$\sin^{4n-1}(\sigma)\cos^3(\sigma)$

Set up	Harmonic space	∧ formalism	Differential equation for banana diagram	PF for SH
00	000000	00	●000	00000

Differential equation for banana diagram

Set up	Harmonic space	Λ formalism	Differential equation for banana diagram	PF for SH
00	000000	00	0●00	00000

The simplest example is G^2 . Then acting by Λ we get:

$$\Lambda(G^2) = 2G\Lambda G, \tag{34}$$

$$\Lambda^{2}(G^{2}) = 2\Lambda G\Lambda G + 2G\Lambda^{2}G = 2\Lambda G\Lambda G + 2\lambda^{2}(G^{2})$$
(35)

and

$$\Lambda^{3}(G^{2}) = 4\Lambda^{2}G\Lambda G + 2\Lambda\lambda^{2}(G^{2}) = 2\lambda^{2}\Lambda(G^{2}) + 2\Lambda\lambda^{2}(G^{2}).$$
(36)

as result we get:

$$\left[\Lambda^3 - 2\Lambda\lambda^2 - 2\lambda^2\Lambda\right]G^2 = 0, \tag{37}$$

For G^3 we can get:

$$\left[\Lambda^4 - 3\Lambda^2\lambda^2 - 3\lambda^2\Lambda^2 - 4\Lambda\lambda^2\Lambda + 9\lambda^4\right]G^3 = 0$$
(38)

Set up	Harmonic space	Λ formalism	Differential equation for banana diagram	PF for SH
00	000000	OO	0000	00000

• To derive the differential equation for the banana diagram $B_n = G^n$ let us introduce a set of differential operators $\{O_k\}$ that act on the function $B_n = G^n$ as follows:

$$O_k B_n = B_n^{(k)} \left(\Lambda G\right)^k, \tag{39}$$

Applying the operator Λ to $O_{k-1}B_n$ we obtain the recurrence relation:

$$O_{k} = \Lambda O_{k-1} - (k-1)(n-k+2)\lambda^{2}O_{k-2}.$$
(40)

This relation allows us to determine an operator for any given number k. The chain ends at step n+1 where $O_{n+1}B_n = 0$ because $B_n^{(n+1)} = 0$.

The recurrence relation (40) is similar to the recurrence relation for the determinant of a tridiagonal matrix. As a result:

$$det \begin{pmatrix} \Lambda & c_1 \lambda & 0 & \dots & 0 & 0 \\ c_1 \lambda & \Lambda & c_2 \lambda & \dots & 0 & 0 \\ 0 & c_2 \lambda & \Lambda & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & \Lambda & c_n \lambda \\ 0 & 0 & 0 & \dots & c_n \lambda & \Lambda \end{pmatrix} G^n = 0 , \qquad (41)$$

where $c_k = \sqrt{k(n-k+1)}.$

Set up	Harmonic space	Λ formalism	Differential equation for banana diagram 0000	PF for SH
00	000000	00		00000

For n = 1, the determinant gives the Klein-Gordon equation (33):

$$\hat{D}_1 = \det \begin{pmatrix} \Lambda & \lambda \\ \lambda & \Lambda \end{pmatrix} = \Lambda^2 - \lambda^2.$$
 (42)

For n = 2, one can obtain:

$$\hat{D}_{2} = \det \begin{pmatrix} \Lambda & \sqrt{2}\lambda & 0\\ \sqrt{2}\lambda & \Lambda & \sqrt{2}\lambda\\ 0 & \sqrt{2}\lambda & \Lambda \end{pmatrix} = \Lambda^{3} - 2\Lambda\lambda^{2} - 2\lambda^{2}\Lambda,$$
(43)

and so on.

Set up	Harmonic space	Λ formalism	Differential equation for banana diagram	PF for SH
00	000000	00	0000	●0000

PF for SH

Set up	Harmonic space	∧ formalism	Differential equation for banana diagram	PF for SH
00	000000	00	0000	0€000

■ In Euclidean space, one can use momentum representation to derive the Feynman parameter representation of the Banana diagram:

$$\widetilde{B}_{n}(p^{2}) = \int_{0}^{\infty} \left[\prod_{i=1}^{n} d\alpha_{i} \right] \delta\left(1 - \sum_{i=1}^{n} \alpha_{i} \right) \frac{U^{\frac{n(2-\alpha)}{2}}(\alpha)}{\left(\alpha_{1} \cdots \alpha_{n} p^{2} - m^{2} U(\alpha) \sum_{i=1}^{n} \alpha_{i} \right)^{1 + \frac{(n-1)(2-\alpha)}{2}}}, \quad (44)$$

where α is a Feynman parameter and $U(\alpha) = \prod_{i=1}^{n} \alpha_i \sum_{j=1}^{n} \alpha_j^{-1}$.

■ In this case, banana integrals satisfy Picard-Fuchs equations :

$$\hat{\mathsf{PF}}_{p^2} \cdot \widetilde{B}_n(p^2) = 0. \tag{45}$$

For example for n = 2:

$$\left[p^{2}(p^{2}-4m^{2})\partial_{p^{2}}-(d-4)p^{2}-4m^{2}\right]\widetilde{B}_{n}(p^{2})=0. \tag{46}$$

Set up	Harmonic space	Λ formalism	Differential equation for banana diagram	PF for SH
00	000000	OO	0000	00●00

■ The Klein-Gordon equation in harmonic spaces is similar to the differential equation for the Green's function in Euclidean space with $m^2 \rightarrow m^2 + \xi R$:

$$(\Delta - m^2 - \xi R)G(\sigma) = G''(\sigma) + (d - 1)\sigma^{-1}G'(\sigma) - (m^2 + \xi R)G(\sigma) = 0$$
(47)

Therefore, the Green's function in simple harmonic space is given by:

$$G(\sigma) \sim \int_0^\infty ds \mathcal{K}(s, \sigma), \tag{48}$$

the heat kernel is given by:

$$\mathcal{K}(\boldsymbol{s},\sigma) = \sum_{i} e^{-s\lambda_{i}} \phi_{i}(\boldsymbol{x}) \phi_{i}^{*}(\boldsymbol{y}) \sim \frac{1}{s^{\frac{d}{2}}} e^{-\frac{\sigma^{2}}{4s} - (m^{2} + \xi R)s}, \tag{49}$$

■ Now, let us consider multi-loop banana diagrams:

$$B_n = G^n(\sigma) \sim \int \prod_{k=1}^n \left[ds_k \sum_{i_k} e^{-s\lambda_{i_k}} \phi_{i_k}(x) \phi_{i_k}^*(y) \right]$$
(50)

$$\sim \int_{0}^{\infty} \left[\prod_{k=1}^{n} \frac{ds_{k}}{s_{k}^{2}} \right] e^{-\frac{a^{2}}{4} \left(\sum_{k=1}^{n} \frac{1}{s_{k}} \right)} e^{-(m^{2} + \xi R)(\sum_{k=1}^{n} s_{k})}.$$
(51)

How to compute the following expression?

$$\delta_{ij}\widetilde{B}_n(\lambda_i) = \int d^d x \int d^d y \, \phi_i(x) \phi_j^*(y) B_n(x,y)$$
(52)

Harmonic space	Differential equation for banana diagram	PF for SH
000000 -		00000

Exponential term can be wtritten as:

$$e^{-\frac{\sigma^2}{4\left(\sum_{k=1}^n \frac{1}{s_k}\right)^{-1}}} \sim \left(\sum_{k=1}^n \frac{1}{s_k}\right)^{-d/2} \sum_i e^{-\left(\sum_{k=1}^n \frac{1}{s_k}\right)^{-1} (\lambda_i - m^2 - \xi R)} \phi_i(x) \phi_i^*(y).$$
(53)

■ Therefore, we can rewrite the equation for the banana diagram in terms of mode expansion:

$$B_n(x,y) \sim$$
 (54)

$$\sim \int_0^\infty \left[\prod_{k=1}^n \frac{ds_k}{s_k^2} \right] \left(\sum_{k=1}^n \frac{1}{s_k} \right)^{-\frac{d}{2}} \sum_i e^{-\left(\sum_{k=1}^n \frac{1}{s_k} \right)^{-1} (\lambda_i - m^2 - \xi R) - (m^2 + \xi R) (\sum_{k=1}^n s_k)} \phi_i(x) \phi_i^*(y).$$

Hence we can obtain integrals in terms of the Feynman parameter:

$$\begin{split} \widetilde{B}_n(\lambda_i) \sim \\ \sim \int_0^\infty \left[\prod_{i=1}^n d\alpha_i\right] \frac{\delta\left(1-\sum_{i=1}^n \alpha_i\right) U^{\frac{n(2-d)}{2}}(\alpha)}{\left(\alpha_1 \cdots \alpha_n (\lambda_i - m^2 - \xi R) - (m^2 + \xi R) U(\alpha) \sum_{i=1}^n \alpha_i\right)^{1+\frac{(n-1)(2-d)}{2}}} \end{split}$$

As a result, the Feynman parameter representation of the banana diagram in a simple harmonic space is the same as in Euclidean space with replaced parameters: $p^2 \rightarrow \lambda_i - m^2 - \xi R$ and $m^2 \rightarrow m^2 + \xi R$. Consequently, the Picard-Fuchs equations are the same as in Euclidean space.

Set up	Harmonic space	∧ formalism	Differential equation for banana diagram	PF for SH
00	000000	00	0000	0000●

Thanks for your attention