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Main results:

1) The certain conical singularity at the horizon of the Schwarzschild
type deformed IIA supergravity 10-dimensional background leaves only three
non-divergent fermion angular modes interpreted as three generations of the
down-type quarks.

2) The resulting expressions for the quark masses are a geometry version
of the Froggatt-Nielsen mechanism.

3) The compactification of extra 4- and 1-dimensional subspaces, gives
the spectrum of Fermi fields which profiles in AdS5 and corresponding Higgs
generated masses in 4 dimensions depend on the eigenvalues of Dirac operator
on the named compact subspaces.

As an unexpected bonus it is observed that Dirac equation received after
compactification of the 4-dimensional base curiously coincides with the non-
relativistic Schrödinger equation for an electron moving in a Coulomb field,
where eigenvalues of Dirac operator at the compact space play the role of the
electron’s orbital momentum.
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Up and Down quarks, charged leptons (electron,

muon, τ -meson) and neutrinos are 4 families of elemen-

tary fermions in Standard Model (SM), each famtily in-

cludes 3 members (generations) similar in their interac-

tions but essentially different in masses. Experimentally

observed values of these masses remain unexplained for

decades. And what may be the origin of 3 generations?

Models in extra dimensions are among the popular

trends aimed at resolving this SM enigma. In particu-

lar, Dirac equations are considered on the background of

slice of AdS5 (Randall-Sundrum model) [1] - [3]. Then

for fermion masses mf in 4 dimensions it is obtained:

mf ∼ ϵ2cf−1, cf =
Mf

k
, (1)

whereMf is the bulk mmass of corresponding fermion in

5D, k is curvature of AdS5, ϵ = 10−16 is the Planck-TeV

hierarchy parameter.

Thus to get the observed masses of quarks in the inter-

val from 1 MeV to 200 GeV the special choice of values

of parameters cf in vicinity of 1/2 for every of 6 quarks

is demanded. This fine-tuning of fermion bulk masses is

an essential drawback of these models.
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The present work is an attempt to find a geometric

justification for three generations, for ratios of masses of

different generations and for parameters cf in (1). It gen-

eralizes and brings the supergravity basis to the approach

of papers [4] - [7].

A toy model will be considered where the group struc-

ture and left-right asymmetri of the Standard Model is

ignored, only one family is taken into account.

The background space-time is a familiar one satisfy-

ibg the dynamics given by the reduced IIA supergravity

Lagrangian modified by the addition of the Λ-term:

L
(10)
IIA = R(10) − 1

2
(∇ϕ)2 − eϕ/2

2 · 24!
F 2
(4) − 2Λe−ϕ/6, (2)

whereR(10) is scalar curvature in 10 dimensions, ϕ - scalar

field, F(4)i1,i2,i3,i4 is 4-form.
The dynamic equations following from this Lagrangian

admit the long time known [8] - [14] p-brane (fluxbrane)
throat-like solution which also permits the Schwarzschild
type Euclidean deformation. We write down this metric
in Poincare-like coordinates convenient for studing Dirac
equation on this background:

3



Background metric

ds2(10) =
1

(kz)9/4

[
ηµνdx

µdxν + U(z)
(
Tθ
2π

)2

dθ2 +
dz2

U(z)
+ κ2z2dΩ2

(4)

]
, (3)

where

U(z) = 1−
 z

zIR

6

, F(4) = Qdy1 ∧ ... ∧ dy4 (4)

M(4) × S1 ×R× S4 Almost AdS6 × S4

M(4) is 4D Minkowski space-time; Tθ is period of compact coordinate S1

(0 < θ < 2π); dΩ2
(4) is volume element on sphere S4 of unit radius, yi are

angles of this sphere (i = 1, 2, 3, 4); constants k and κ are expressed through
Q and Λ; z is isotropic coordinate along the throat. It changes in the interval

zUV =
1

k
≤ z ≤ zIR. (5)

defining the slice of the space-time (3).

In the vicinity of the Schwarzschild ”horizon” change of coordinate z =
zIR[1− (3/2)(τ/zIR)

2] transfotm metric (3) to

ds2(10) =
1

(kzIR)9/4

[
ηµνdx

µdxν + η2τ 2 dθ2 + dτ 2 + κ2z2IRdΩ
2
(4)

]
, (6)

with

U = 9

 τ

zIR

2 . η = 3 · Tθ
2πzIR

. (7)

In case η ̸= 1 metric (6) presents conical singularity at τ = 0 (z = zIR).
Dynamically this is possible if there is a codimension two plane at this point
which dimensionless tention σ = 2π(1 − η) [15] - [19]. η is one more free
constant of the model, its value determines the permitted number of fermion
generations.
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Dirac equation

Dynamics of the zero mass spinor in 10D is given by the standard Action:
Large

SΨ =
∫
Ψ̄(32)Γ̃

ADAΨ(32)

√
−g(10)d10x. (8)

Here Γ̃A are 32 × 32 gamma matrices in curved 10D space-time (see [21],
[22]), DA are covariant derivatives with account of spin connection.

32-component spinor living on 10D background (3) may be presented as a

decomposition of 8-component spinors Ψ
(l)
(8)(x

µ, θ, z) in 6D and eigenfunctions

χ(l)(y
i) of Dirac operator on sphere S4 of unit radius, with eigenvalues K

(4)
l =

±(l+ 2) [20], here (l) enumerates main eigenvalues. Dependence of fields on
θ is represented by a Fourier expansion over eiqθ (q = 0, 1, 2...).

8-component spinor is in turn a couple of 4-component spinors ψ±, obey-
ing ordinary Dirac equations (γµ∂µ −m±)ψ±(x) = 0. Each of them consist
of the right and left Weyl spinors (ψ± = ψ±

R + ψ±
L ) which profiles along the

throat for every eigenvalues (l, q), F± l,q
R,L (z), are in the focus of our interest.

Omitting technical details and also the indices (l, q of profiles F
± (l,q)
R,L (z),

we present the final Dirac equation for these profiles:

 d
dz

+
2πq

Tθ U
+

cl

z
√
U

F−
R−

m−
√
U
F−
L = 0, U = 1−

 z

zIR

6 ,
(9)

 d
dz

− 2πq

Tθ U
− cl

z
√
U

F−
L +

m−
√
U
F−
R = 0, cl = K

(4)
l /κ

(10)

K
(4)
l = ±(l + 2), κ see in (3).
For q = 0, U = 1 these equations coincide with the similar equations in

5D models [1] - [3]; constants cl determined by the geometry of the model
are the analogy of constants cf =Mf/k of 5D models.
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Three generation

For every component of spinor field Ψ32 that is for each mode q, l, ±
and separately for R and L Weyl components coefficient in action (8) at
the kinetic term ψ̄γµ∂µψ must be normalized to one. Thus for metric (3),
with account of decomposition of Ψ(32) over eigenfunctions and their normal-
ization

∫
χ̄lχl′dΩ(4) = δl l′ ,

∫
ei(q−q′)θdθ = 2πδq q′ the following normalization

condition of profiles F±
R,L(z) must be satisfied:

2π
∫ zIR
zUV

1√
U
(F±

R,L)
2dz = 1. (11)

According to Dirac equations (9), (10) in the vicinity of the Schwarzsxhild
IR end of the throat FR,L ∼ τ±q/η and dz/

√
U ∼ dτ (see (6), (7)) it is seen

that integral (11) does not diverge if

∫
0
τ±

2q
η dτ <∞. (12)

For smooth IR end (η = 1) of metric (3) or (6) this

integral is non-divergent only for one mode q = 0. In

case

2 < η < 4 (13)

integral (12) is finite for three modes q = 0,±1 which

may be interpreted as 3 fermion generations.

Thus, we reproduce here result of [6] but not for the extra 2-sphere as
a background but for the Schwarzschild deformed supergravity background
(3). Inequalities (13) mean that tension σ of the co-dimension two brane
limiting the IR end of the throat (3) must be negative, −6π < σ < −2π.
The surfaces with negative tension are callad O-planes or orientifolds [23],
[24].
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The case of non-chiral fermions. A curious
parallel with quantum mechanics

In what follows we set U = 1 and consider m− ̸= 0 in Dirac equations
(9), (10) for F−

R,L. Then the second-order equations obtained from from this
system look as:

d2F−
R

dz2
−

[
ω2 + 4π q cl

Tθ z
+ cl(cl+1)

z2

]
F−
R = 0,

d2F−
L

dz2
−

[
ω2 + 4π q cl

Tθ z
+ cl(cl−1)

z2

]
F−
L = 0,

ω =

√(
2πq

Tθ

)2

– (m−)2. (14)

It is curious to note that these equations coincide with the non-relativistic
Schrödinger equation for an electron moving in a Coulomb field, where cl
in (14) play the role of the electron’s orbital momentum. The solutions of
these equations, as well as the corresponding energy spectrumn, are expressed
through the degenerate hypergeometric functions [25]. In our case we speak
about the spectrum of fermion mass m−H received from (9), (10), (14) with
imposing on FR,L(z) the well known boundary conditions (BC) required by
the Hermiticity of Dirac operator:

F−
L (zUV )F

−
R (zUV ) = F−

L (zIR)F
−
R (zIR) = 0. (15)

It may be shown that ”normal” BC F−
L (zUV ) = F−

L (zIR) = 0 (or F−
R (zUV ) =

F−
R (zIR) = 0) give a tower of Kaluza-Klein (KK) heavy modes with masses
m−

n , their lower value is of order T−1
θ ≈ z−1

IR . To escape the observationally
forbidden phenomena, like flavor changing neutral currents generated by the
exchange of these KK heavy modes, z−1

IR must be above several TeV. Thus
heavy modes can not be the low mass quarks or leptons.

Whereas imposing on the solutions of Eq-s (14) the so called ”twisted”
BC F−

L (zUV ) = F−
R (zIR) = 0 [26] (see also [22], [27]) gives for every q, l the

single mode with small mass mtw
q,l ≪ z−1

IR . Unfortunately calculation shows
that the values of these masses and the ratios of the masses of fermions of
three generations (q = 0,±) strongly diverge from the observed values.

Thus, it is necessary to look at chiral fermions and the conventional Higgs
mechanism for generating fermionic masses.

7



Higgs mechanism and zero modes profiles.
Some predictions

For chiral fermions, that is for m = 0 in Eq-s (9), (10), and for U = 1 in
these equations we have four zero modes profiles

F−
R = C−

R e
−qt t−cl , F−

L = C−
L e

qt tcl ,

F+
R = C+

R e
qt tcl , F+

L = C+
L e

−qt t−cl .
(16)

ϵ8/9
3

η
= tUV < t =

3

η

z

zIR
< tIR =

3

η
, ϵ = 10−16 2 < η < 4. (17)

.
Fermion mass Action with the Higgs field H looks as

SH =
∫

Ψ̄(32)HΨ(32)

√
−g(10)d10x, (18)

where vacuum average of the Higgs field H is located near the IR end of the
throat. Then small fermion masses are acquired by the fields which profiles
are small at the IR end, that is by the fields with profiles F−

R , F+
L in (16).

Calculating coefficients C−
R , C

+
L in (16) and under the assumption ⟨H⟩ =

Y δ(z−zIR)/N (Y is dimensionless Yukawa coupling constant) we get finally

ml,q = Y
2cl − 1

zIR

(
zUV

zIR

)2cl−1

e−q· 6
η . (19)

In this paper, three generations of one type of Standard Model fermions
are considered. It is worth to try to identify three masses (19) obeying
inequalities mq=1,l=0 < mq=0,l=0 < mq=−1,l=0 with masses of three down
type quarks d, s, b (at scale 2 GeV; errors are shown in brackets): md =
4.67(32)MeV < ms = 0.093(2)GeV < m(b) = 4.18(2)GeV [?]. The observed
ratios of these masses are equal to:

md

ms

= 5.0(7) · 10−2,
ms

mb

= 2.22(25) · 10−2, (20)

whereas in the considered model these ratios, according to (19), are:

md

ms

=
ms

mb

= e−
6
η .

md

ms

= e−3 = 5 · 10−2 (η = 2). (21)
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Conclusion

The first obvious improvement of the considered model would be to drop
the assumption of independence of Higgs field on the angular coordinate θ.
Then Action (18) will generate mass matrix mq,q′ with non-zero non-diagonal
elements, q ̸= q′; in particular, in this case the ratios of the eigenvalues of
this mass matrix should not be equal to each other like in (21). In the models
incorporating up and down quarks the knowledge of the m̂up and m̂down 3×3
mass matrices would allow us to calculate the Cabibbo-Kobayashi-Maskawa
(CKM) matrix and hopefully to find the geometry origin of the so called
”flavor puzzle”.

Three main results of this paper may be outlined.
It is shown that Schwarzschild Euclidean deformation of the general-

ized IIA supergravity background with certain angle deficit factor −6π <
2(1−η) < −2π of the conical singularity at the ”horizon” leaves non-divergent
three fermion angular modes interpreted as three generations of fermions of
one and the same type. This result reproduces similar earlier results achieved
perhaps in more artificial 6D models. Of course, the question remains about
the mechanism for the appearance of a surface with negative tension, pro-
viding the necessary angular deficiy.

Proportionmq ∼ e−6 q/η (19) is a geometry version of the Froggatt-Nielsen
(FN) mechanism. Also for η = 2 + ϵ in (21) (ϵ ≪ 1), the obtained ratio of
masses of d and s quarks md/ms = e−3 is experimentally viable. However, it
is necessary to emphasize that in the unrealistic model under consideration,
which ignores the SM group nature, specific numerical predictions are hardly
justified.

It is demonstrated that using 10 dimensional supergravity backgrounds
the usually arbitrarily selected in the models of 5D warped compactifications
fermions’ bulk masses may be identified with the eigenvalues of the Dirac
operator on a compact 4D subspace K(4).
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