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Motivation

de Sitter (dS) space solves

R𝛼𝛽 − 1
2
R g𝛼𝛽 = Λ g𝛼𝛽 + ⟨T𝛼𝛽⟩,

Is ⟨T𝛼𝛽⟩ relevant or not? Common wisdom is that it is always
not relevant. I will try to convince you that under certain
circumstances this is a wrong intuition even for massive fields.
There is UV divergence in ⟨T𝛼𝛽⟩. At leading order it is the
same as in flat space ⟨T𝛼𝛽⟩ ∝ g𝛼𝛽 . Leads to the
renormalization of Λ.
On top of that there also can be non-trivial fluxes in ⟨T𝛼𝛽⟩,
because dS metric is time dependent — the situation is
non–stationary. Everything depends on the initial state wrt
which the average is done in ⟨T𝛼𝛽⟩.
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Motivation

In time-dependent strong background fields:

There are no asymptotic states: modes behave as
g(t) ∼ A± e−i𝜔± t + B± e i𝜔± t , as t → ±∞;
There is no energy conservation;
As a result there is no factorisation in the vertexes of diagrams
for soft modes and, hence, there is no cancellation of IR
divergences;
No such a notion as particle: free Hamiltonian cannot be
diagonalized once and forever.
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Motivation

One should use Schwinger-Keldysh in-in diagrammatic
technique rather than the Feynman in-out one;
In non–stationary situations the quantities to consider are the
correlation functions:

⟨O(t1, . . . , tn)⟩ =
⟨︀
st
⃒⃒
U+ T [O(t1, . . . , tn)U]

⃒⃒
st
⟩︀
,

rather than amplitudes:

A =
⟨out |T [O(t1, . . . , tn)U]| in⟩

⟨out |U| in⟩
.

At least because there are no asymptotic states and due to
the presence of uncontrolable IR divergences.
Observables are correlation functions, such as e.g. ⟨T𝛼𝛽⟩,
rather than cross-sections. They are defined in a geodesically
incomplete space-time with an initial Cauchy surface;
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Motivation

In any interacting QFT on a strong background field for any
initial state there are secular IR loop contributions to the
correlation functions;
There are several different types of secular effects;
The secular growth in the loops, which is of interest for us is
an IR effect. It does not affect UV physics;
The presence of secular effects means that quantum
corrections can be of the same order as classical contributions;
IR effects are non–local. Hence, their contributions can
depend on reference system and initial conditions.

5 / 23



Motivation

dS has SO(D, 1) isometry. Similar to the Poincaré invariance
in Minkowski space;
If dS isometry is respected, then all correlation functions
depend only on geodesic distances and, e.g., ⟨T𝛼𝛽⟩ ∝ g𝛼𝛽 —
No any flux! That is true even in the presence of the secular
contributions;
Is the dS isometry always respected? On tree–level and/or in
the loops? For all initial states? For all patches of dS space?
If there is such a ground state that respects dS isometry at all
stages of quantization, is it stable under non–symmetric
perturbations? Can a secular growth provide a destructive flux,
⟨T𝛼𝛽⟩?
We will see that even for the massive scalar fields the situation
is quite counterintuitive.
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Setup

We consider

S =

∫︁
dDx

√︀
|g |

[︂
1
2
g𝛼𝛽 𝜕𝛼𝜑𝜕𝛽𝜑 + V (𝜑)

]︂
,

where [sign(g) = (−,+,+,+)];
We start with the consideration as the background the
expanding Poincaré patch (EPP) ds2 = 1

𝜂2

[︀
−d𝜂2 + dx⃗2]︀,

where 𝜂 = e−t ;
In the EPP the conformal time is ranging form 𝜂 = +∞ at
past infinity (t = −∞) to 𝜂 = 0 at future infinity (t = +∞);
In the contracting Poincare patch (CPP) the conformal time is
changing in the reverse direction;
Global dS is the union of EPP and CPP;
We set the radius of the dS spacetime to one. Our goal is to
check whether the assumption of negligible backreaction is
self-consistent or not for various sorts of initial conditions.
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The Schwinger-Keldysh technique is causal

Figure: The union of past ligh cones of external points of a diagram on
the Penrose diagram of de Sitter space-time; the blue line shows the
boundary between Expanding and Contracting Poincare Patches.
Within the framework of the Schwinger-Keldysh technique one
integrates in the loop integrals over these past light-cones.
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Setup

Mode functions in the EPP are factorized as

gp(𝜂) e−i p⃗ x⃗ = 𝜂(D−1)/2 h𝜈(p𝜂) e−i p⃗ x⃗ ,

where h𝜈(p𝜂) is a solution of the Bessel equation of order

𝜈 =

√︁(︀
D−1

2

)︀2 −m2;
m > (D − 1)/2 — principal series. m < (D − 1)/2 —
complementary series;
The field is expanded as:

𝜑(𝜂, x⃗) =

∫︁
d (D−1)p⃗

[︁
ap⃗ gp(𝜂) e−i p⃗ x⃗ + a+p⃗ g*

p (𝜂) e i p⃗ x⃗
]︁
.

ap⃗ and a+p⃗ obey proper commutation relations;
This is just one of the possible ways of quantization that
respects the dS isometry at least at tree-level. In this method
at tree-level the initial Cauchy surface is not apparent.
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Setup

Any Bessel function of the order 𝜈 behaves as follows:

h𝜈(p𝜂) =

{︃
a e i p𝜂√

p𝜂 + b e−i p𝜂
√
p𝜂 , p𝜂 ≫ |𝜈|

c (p𝜂)𝜈 + d (p𝜂)−𝜈 , p𝜂 ≪ |𝜈| .

E.g. the Bunch–Davies (BD) modes are as follows:
h𝜈(p𝜂) ∝ H

(1)
𝜈 (p𝜂) — Hankel function.

There are many more options for the choice of the mode
functions that respects the Hadamard property of the
correlation functions;
IR limit implies that p𝜂 → 0. It is in the future infinity of the
EPP and in the past infinity of the CPP.
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Secular effect specific for massless scalars in dS space

The two–point function of massless field in EPP at coincident
points wrt the BD state, ap⃗|⟩ = 0:

⟨︀
𝜑2(𝜂, x⃗)

⟩︀
0 ∝

∫︁
d3p⃗

p3

[︀
1 + (p𝜂)2]︀

— divergent both in UV and IR.
After UV and IR regularization:

⟨︀
𝜑2

0(𝜂, x⃗)
⟩︀
0 ∝

∫︁ 1/𝜂

1

dp

p

[︀
1 + (p𝜂)2]︀ ∝ log(𝜂) + . . .

— secular growth. 𝜑0 contains only modes for 1 ≫ p𝜂.
⟨𝜑(𝜂1, x⃗1)𝜑(𝜂2, x⃗2)⟩ is not a function of the geodesic distance
between (𝜂1, x⃗1) and (𝜂2, x⃗2), when m = 0. Violates dS
isometry.
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Secular effect specific for massless scalars in dS space

In the loops the correlation function also receives secular
corrections:

⟨︀
𝜑2

0(𝜂, x⃗)
⟩︀
n
∝ log(𝜂)

[︀
𝜆 log2(𝜂)

]︀n, where n grows
with the number of loops.
Even if 𝜆 is very small, after a long enough period of time
quantum corrections become of the order of the classical
contributions 𝜆 log2(𝜂) ∼ 1.
Hence, to understand the physics in dS space one needs to
resum at least the leading contributions from all loops.
To do the resummation, one usually uses
Starobinsky–Yokoyama method, which uses stochastic
equation with a linear random source, �̇�0, in a non–linear
(self-interacting) theory.
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Critique of the Starobinsky–Yokoyama method

What is the approximation in which this method can be
applied? For what initial conditions?
Common wisdom is that this method can be used for any mass
m and leads to the mass renormalization. But that is not true
even for the principal series for a generic initial state.
It is applicable only for small perturbations on top of the BD
state. What if the perturbation is strong?
It cannot be used in global dS space and in the CPP, where
even IR divergences are present. It can be used only in EPP.
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A universal secular growth in dS space

Expanding Poincaré patch is spatially homogeneous. Hence, it
is convenient to consider spatial Fourier transformation of the
correlation functions:

D(𝜂1, 𝜂2, p) ≡
∫︁

dD−1p e i p⃗ x⃗
⟨
𝜑(𝜂1, x⃗) 𝜑(𝜂2, 0)

⟩
Convenient form to trace the destiny of each mode with given
physical momentum p𝜂.
In the massive 𝜆𝜑4 theory, when 𝜂2/𝜂1 → ∞, there is a
universal secular growth to any non–stationary situation:

Dn(𝜂1, 𝜂2, p) ∝
[︁
𝜆2 log (𝜂1/𝜂2)

]︁n
Re

[︁
gp(𝜂1) g*

p (𝜂2)
]︁
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A universal secular growth in dS space

Such a growth, with t2 − t1 = log 𝜂2/𝜂1, cannot be attributed
just to IR limit. It can be also seen in the UV;
In standard situations, the functional dependence of[︁
𝜆2 log (𝜂1/𝜂2)

]︁n
and of Re

[︁
gp(𝜂1) g*

p (𝜂2)
]︁
is the same as

t2 − t2 → ∞;
That means that the secular contributions are present
simultaneously in the Retarded, Advanced and Keldysh
propagators;
As the result, after the resummation such a secular growth
usually leads to the dispertion relation (complex)
renormalization.
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Yet another universal secular growth

In non–stationary situations any field is characterized by three
propagators.
Two of them are retarded and advanced propagators:

D
R
A
0 (p |𝜂1, 𝜂2) = ±𝜃 (∓∆𝜂12) 2 Im

[︁
gp(𝜂1) g*

p (𝜂2)
]︁
.

They do not depend on the state, at least at tree–level.
Another propagator is the Keldysh one:

DK
0 (p|𝜂1, 𝜂2) =

[︂(︂
1
2

+
⟨
a+p⃗ ap⃗

⟩
Ψ

)︂
gp(𝜂1)g*

p (𝜂2)+

+
⟨
ap⃗ a−p⃗

⟩
Ψ
gp(𝜂1) gp(𝜂2) + h.c .

]︂
.

If the initial state |Ψ⟩ respects the spatial translational
invariance. It does depend on the (initial) state.
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Yet another universal secular growth

In the Gaussian approximation —
⟨
a+p⃗ ap⃗

⟩
Ψ

= const, and⟨
ap⃗ a−p⃗

⟩
Ψ

= const. All time dependence is gone into

harmonic functions — h(p𝜂).
If the initial state is the ground one: |Ψ⟩ = |ground⟩ and
ap |ground⟩ = 0, we always have that⟨
a+p⃗ ap⃗

⟩
g

=
⟨
ap⃗ a−p⃗

⟩
g

= 0.

All the quasi–classical results are obtained with the use of the
tree–level propagator:

DK
0 (𝜂1, 𝜂2|p) = Re

[︀
gp(𝜂1) g*

p (𝜂2)
]︀

E.g. Bunch–Davies’s ⟨T𝜇𝜈⟩0 in de Sitter space and Hawking’s
flux in black hole collapse, and Schwinger’s ⟨J𝜇⟩0 in QED.

However, in non-stationary situations
⟨
a+p⃗ ap⃗

⟩
and

⟨
ap⃗ a−p⃗

⟩
start to depend on time. That may strongly modify
quasi–classical flux. 17 / 23



Expanding Poincaré patch of de Sitter space

In the expanding Poincaré patch for m < (D − 1)/2:
gp(𝜂) ≈ A− 𝜂

D−1
2 (p𝜂)−𝜈 , as p𝜂 → 0;

Tree–level plus sunset second loop diagram contribution is:

DK
0 + ∆2D

K ≈ A2
− 𝜂D−1/(p𝜂)2𝜈

[︂
1 + b 𝜆2 log

(︂
p𝜂

|𝜈|

)︂]︂
,

Where b is an integral of a product of modes and 𝜂 =
√
𝜂1 𝜂2.

This result is obtained in the limit as p𝜂 → 0 and
𝜂1/𝜂2 = const;
There are no secular contributions of the type that we consider
in the Retarded and Advanced propagators;
Such a secular growth cannot be absorbed into the self-energy
renormalization and can be attributed only to the change of
the state of the theory.
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Contracting Poincare patch of de Sitter space–time

The contracting Poincare patch, ds2 = dt2 − e−2t dx⃗2, is
the time reversal of the expanding Poincare patch;
Now in the loops one sees the secular divergences:

𝜆2 log
(︁

𝜂
𝜂0

)︁
p 𝜂 < |𝜈|,

𝜆2 log
(︁

|𝜈|
p 𝜂0

)︁
p 𝜂 > |𝜈|.

𝜂0 is the position of the initial Cauchy surface. If 𝜂0 is taken
to past infinity, 𝜂0 = 0, loop corrections are infinite even after
the introduction of the UV cutoff;
Loop corrected propagator is not a function of the geodesic
distance anymore. For any initial state!
Global de Sitter contains both expanding and contracting
patches simultaneously. The situation there is similar to the
one in contracting patch.
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Resummation (general discussion)

To resum the leading corrections from all loops for the case of the
last secular growth one has to

Check that there are no leading corrections to the retarded
and advanced propagators and the leading secular growth of
last type is present only in the Keldysh propagator;
Check that there are no leading corrections to the vertexes;
Put in the system of the Dyson–Schwinger equations retarded
and advanced propagators (and vertexes, if possible) to their
tree–level values. Then this system reduces to the single
equation for the Keldysh propagator. What remains to be
checked what type of diagrams contribute leading corrections;
The described way is to obtain the Boltzmann’s kinetic
equation in the standard situations.
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Resummation (dS invariant case)

If one takes exactly BD state at exactly past infinity of the
expanding Poincaré patch, then one can show that dS isometry
is respected at every loop order, if m > 0;
Moreover, one can show that in this case leading contributions
come from the summation of the bubble diagrams;
That is the reason why in the Dyson–Schwinger equation one
can put the exact Keldysh propagator only into one of the
external legs. As a result in this case the Dyson–Schwinger
equation reduces to a system of linear integro–differential
equations;
The result of the resummation for the principal series is that
anomalous average 𝜅p =

⟨︀
ap⃗ a−p⃗

⟩︀
is evolving from zero to

such a value that after Bogolyubov rotation of ap, a+p and gp,
g*
p correlation functions behave as in the out–state. This is

not a mass renormalization, as Starobinsky–Yokoyama
approach predicts.
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Resummation for non–invariant perturbations

We propose to consider an initial nonsymmetric density
perturbation on top of the BD state.

We cannot just put initial comoving density n0
p at past infinity

of the EPP, because then the physical density will be infinite.
Due to the symmetries of the EPP we put an initial comoving
density at an initial value of the physical momentum
P0 ≡ (p𝜂)0 ∼ 𝜈.

However, if we cut the integration over the physical
momentum at P0 and put an initial value n (P0), for the
comoving density of the exact modes, the internal legs also
bring leading corrections of the type

⃒⃒
𝜆2 log(p𝜂)

⃒⃒n.
Then there follows a non–linear integro–differential equation.
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Conclusions

For the explosive solutions the Keldysh propagator blows up at a
finite proper time. Then, also the expectation value of the
stress–energy tensor blows up (which would appear at the RHS of
the Einstein equations due to the quantum fluctuations). That
means that the backreaction is not negligible. One possibility is
that that the cosmological constant is secularly screened because
the expectation value of the stress–energy tensor under discussion
does not respect the dS isometry. This is a subject of a separate
study. Here we do not consider the backreaction issue.
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