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This talk is devoted to a recently discovered phenomena in
(semi)classical gravity – entanglement islands. It two words – why
are they important?

Entanglement islands are the first “giant” clear manifestation
of quantum nature of gravity which in principle should be
observed in nature
This phenomena helps us to resolve information paradox (at
least on of manifestations of it).

There is a discussion whether islands exist1/help to resolve Page
formulation of information paradox. In this talk we point out simple
situation how the island mechanism fails – “blinking island effect”.

1At least in higher-dimensional long range gravity there are
counterarguments
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Main quantum actor in our talk will be entanglement entropy –
non-local quantum information measure, which can be computed in
quantum systems/quantum field theory.
The original system is divided into two subsystems A and B ,
described by 𝜌tot. Each is described by 𝜌A and 𝜌B – reduced density
matrices obtained via taking partial trace

ℋtot = ℋA ⊗ℋB , Tr 𝜌tot = 1, 𝜌A = Tr
ℋB

𝜌tot , 𝜌B = Tr
ℋA

𝜌tot

Entanglement entropy

S(X ) ≡ S(𝜌X ) = −Tr 𝜌X log 𝜌X , where X = A, B
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In quantum field theory the entanglement entropy is extremely hard
to calculate. One of the rare examples where one can calculate the
entanglement entropy is two-dimensional conformal field theories
(for example 2d massless Dirac fermions). To do this usually the
replica trick is used. The entanglement entropy can be represented
as

S(𝜌A) = −Tr
A
𝜌A log 𝜌A = − lim

n→1

𝜕

𝜕n
Tr (𝜌nA)

First, how to work with 𝜌A?
From Euclidean path-integral point of view the description for 𝜌A is
the following – take geometry corresponding to 𝜌 and add slit along
A (with special boundary conditions).
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S(𝜌A) = −Tr
A
𝜌A log 𝜌A = − lim

n→1

𝜕

𝜕n
Tr (𝜌nA)

Calculation of anything with 𝜌nA and the quantity Tr (𝜌nA) (Renyi
entropy) is equivalent to deformation of the initial geometry to
complicated Riemann surface.
Example : n=3 for A= interval of length ℓ

This geometry is called “Replica Geometry”
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If the geometry is fixed from the start and it IS nondynamical
(i.e. is NOT fixed by any equations of motion like Einstein
equations) – this is the end of the story.
If the geometry IS dynamical (i.e. it is the solution of some
gravity theory) one has the problems – new replicated solution
has to be the solution of equations of motion as well.
Among the “diagonal” solution we can have non-diagonal one
– replica wormhole. Here it is one of the versions of replica
wormholes depiction:
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As we already mentioned entanglement entropy is extremely hard to
calculate in QFT. The explicit example is the entanglement entropy
in two-dimensional conformal field theory (for example
two-dimensional Dirac fermions). The entanglement entropy of
interval of length ℓ is given by

S(ℓ) =
c

3
log

ℓ

𝜀

remember that correlation function between two points x2 − x1 = ℓ
is decreasing

G (ℓ) =
1

ℓ2Δ

Correlations function depends only on two points, quantum
correlations weakens with distance
Entanglement entropy is non-local, increasing and absorbing
all quantum information in the interval
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Two-dimensional system. Green functions is about creation particle
in one point and destruction in another one. Entanglement entropy
is about total amount of correlations in a large region in general.
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If you consider two-point correlation function on fixed
background which is the solution of Einstein equations (no
backreation) – it does not matter whether it is Einstein or
Gauss-Bonnet (for example).
The entanglement entropy takes care about it and the formula
for entanglement entropy drastically changes.
All this story in the end condeses in the “island formula”. The
statement – on the (semi)classical background described by
some gravity theory the entanglement entropy is theory
dependent and completely different from that one in
non-dynamical geometry.

S(R) ≃ min
ℐ

{︂
Area(𝜕ℐ)

4G
+ Smatter (R ∪ ℐ)

}︂
(Almheiri et al. 19, Penington et al.’19 )
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S(R) ≃ min
ℐ

{︂
Area(𝜕ℐ)

4G
+ Smatter (R ∪ ℐ)

}︂
(Almheiri et al. 19, Penington et al.’19 )

Remember that entanglement entropy S(R) + S(I ) is not equal to
S(R ∪ I ) –the latter is much more complicated to calculate
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Eternal black hole – two causally disconnected, but entangled
universes (left (IV) and right(I)).

The metric of the four-dimensional Schwarzschild black hole is

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΩ2

2, f (r) = 1 − rh
r

where rh = 2GM denotes the black hole horizon, dΩ2
2 is the metric on

S2. Introducing Kruskal coordinates

U = − 1
𝜅h

e−𝜅h(t−r*(r)), V =
1
𝜅h

e𝜅h(t+r*(r))

with the tortoise coordinate r*(r) = r + rh log |r − rh|/rh and the surface
gravity 𝜅h = 1/2rh, we can rewrite the metric in the form

ds2 = −e2𝜌(r)dUdV + r2dΩ2, e2𝜌(r) =
rh
r
e−r/rh
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Task: Calculate the entanglement entropy of Hawking radiation using the
island formula for an 4d eternal Schwarzschild black hole (Hashimoto et
al. ‘20)

S(R) ≃ min
𝜕I

{︂
ext
𝜕I

[︂
Area(𝜕I )

4GN
+ Ssemi−class(R ∪ I )

]︂}︂
Problems:

1 The island formula has not been derived for the theory under
consideration (derived rigorously only in JT gravity)

2 There are no convenient analytical formulas for the entanglement
entropy Ssemi−class(R ∪ I ) in four-dimensional quantum field theory

Assumptions:
1 Assume that the island formula holds in 4D Einstein gravity

2 Reduce the problem to an effective two-dimensional field theory,
preferably CFT2, for which there are analytical formulas for the
entanglement entropy (s-mode approximation)

12
/ 25



Assumptions:
1 Assume that the island formula holds in 4D Einstein gravity
2 Reduce the problem to an effective two-dimensional field

theory, preferably CFT2, for which there are analytical
formulas for the entanglement entropy (s-mode approximation)

Comments on these assumptions:
1 In 2d JT gravity the existence of islands are proven. There is

large discussion whether island formula and replica wormholes
take place in higher-dimensional(!) gravity in the same way as
in 2d (and whether they even exist). We do not have final
arguments on both sides. This is open question.

2 Using s-mode approximation for quantum fields (i.e. going to
two-dimensional background and 2d CFT formulas) gives
essentially the same answer as if use some higher-dimensional
formulas, for simplest setups and assuming islands presence
(Bousso, Penington; arXiv:2312.03078)
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For the metric of the form (BH metric written in Kruskal coordinates)

ds2 = −e2𝜌(r)dUdV , e2𝜌(r) =
rh
r
e−r/rh

the entanglement entropy of c copies of free massless Dirac fermions in
curved spacetime (use Weyl invariance) (Casini et al. ‘05)

Ssemi−class(R) =
c

3

⎛⎝ N∑︁
i, j=1

log
d(xi , yj)

𝜀
−

N∑︁
i < j

log
d(xi , xj)

𝜀
−

N∑︁
i < j

log
d(yi , yj)

𝜀

⎞⎠
where R = [x1, y1] ∪ . . . ∪ [xN , yN ], 𝜀 is UV cutoff and

d2(x, y) = [U(x)− U(y)] [V (y)− V (x)] e𝜌(x)e𝜌(y), x = {rx , tx}

How we one obtains this formula? Technically the entanglement entropy
in 2d CFT and BCFT is essentialy given by special limit of primary
operators n-point correlator.
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Choose the infinite regions on both sides extending for some points
b± to infinity (yellow). Assume that the island is located as shown
in picture (magenta)
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tt

Information paradox: the entanglement entropy without islands (red)
exhibits linear growth which is unbounded and after some time it will
exceed the entropy of black hole. However after some time green line (EE
with islands) stops the growth.

I = ∅ : S(R) =
c

6
log

[︂
16r2

h (b − rh)

𝜀2b
cosh2 tb

rh

]︂
≃

tb≫rh

c tb
6rh

→

growth

I ̸= ∅ : S(R) ≃ 2𝜋r2
h

GN
+

c

6

[︂
log

(︂
16r3

h (b − rh)
2

𝜀4b

)︂
+

b − rh
rh

]︂
→
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Black holes with reflecting boundaries (BH in cavity) and Hawking
radiation in such black holes is the classical topic in the subject
[Russo, Susskind, Thorlacius (’92), York (’85), Gross,Perry, Yaffe
(82’) etc.]. Why we would like to apply this setup

Black hole in cavity is thermodynamically stable
Regularization of effects related to infrared, divergences etc.
For example in entanglement entropy there is IR mode which
is typically omitted in calculations
[D.S. Ageev, I.Ya. Aref’eva, A.I. Belokon, A.V. Ermakov, V.V.
Pushkarev, T.A. Rusalev, arXiv:2209.00036]; [D.S. Ageev,
I.Ya. Aref’eva, A.I. Belokon, V.V. Pushkarev, T.A. Rusalev
arXiv:2304.12351]
Probing more complicated dynamics i.e. interplay of reflected
and straight radiation
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To probe the radiation let us put the fixed reflecting boundary at
some radius r0 (on both sides of eternal black hole). Now Dirac
fermions reflects from the boundary (i.e. one should proceed with
BCFT calculations). Technically the problem reduces to calculation
of correlators in the disc with curved metric (via mapping to
upper-half plane where BCFT answers are known).

22 23 24

Remind, that the entanglement entropy in 2d CFT and BCFT is
essentialy given by special primary operators correlator.
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BCFT2 on upper half-plane

Basic BCFT2 geometry – Euclidean flat upper half-plane (UHP)
22 23 24

boundary

sp
at

ia
l h

al
f-

lin
e

ds2 = dx2
1 +dx2

2 = dzdz̄ , z = x1+ ix2, x1 ∈ (−∞,∞), x2 ≥ 0

Here x1 is Euclidean time, x2 is the spatial coordinate, x2 = 0 is
boundary
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Euclidean double-boundary geometry is the interior of the disc

{X 2 + 𝒯 2 ≤ L2
0 |X , 𝒯 ∈ [−L0, L0]}, L0 =

e𝜅hr*(r0)

𝜅h

Conformal map from disc to UHP is

z = i
L0 + w

L0 − w

Weyl transform to flat upper half-plane

22 23 24
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For close enough boundary we observe no information paradox at
all. This is natural because the amount quanta of radiated at
infinity is not enough to give large numbers – we see saturation at
red line – below the green line which is BH entropy given by
islands. Island is subdominant.

50 100 150 200

10

20

30

40

50

60

70

20
/ 25



However for boundary located faraway enough we see the problems
– first we have the growth via radiation. Then island mechanism
start to work – green line at BH entropy scale. At some time we see
how the island ceases to exist for a short time – “blink of island”.
Then everything is OK – green line. For the blinking time the
entropy exceeds SBH
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What will happen if we consider asymmetric state? I.e. we put the
reflecting boundary only on the one side of the black hole.
Two-sided black hole is believed to correspond to some kind of the
thermofield double state (Israel ’76). What is our universe is with
boundary, and it cousin is free of it? Technically in Euclidean
spacetime it is described by half-disc united with half-space and
endowed by some non-trivial metric

22 23 24
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The black hole boundaries introduces new effects to the
radiation dynamics
The interplay of old and young Hawking radiation quanta for
Dirac massless fermions seem to make island mechanism as it
is useless ot resolve Page formulation of information paradox.
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Thank you for your attention!
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